
Blackbox Prediction of the Impact of DVFS on End-to-End
Performance of Multitier Systems

Shuyi Chen1, Kaustubh R. Joshi2, Matti A. Hiltunen2,
Richard D. Schlichting2, and William H. Sanders1

1Coordinated Science Laboratory
University of Illinois at Urbana-Champaign

Urbana, IL, USA
{schen38,whs}@illinois.edu

2AT&T Labs Research
180 Park Ave.

Florham Park, NJ, USA
{kaustubh,hiltunen,rick}@research.att.com

ABSTRACT
Dynamic voltage and frequency scaling (DVFS) is a well-
known technique for gaining energy savings on desktop and
laptop computers. However, its use in server settings re-
quires careful consideration of any potential impacts on end-
to-end service performance of hosted applications. In this
paper, we develop a simple metric called the “frequency gra-
dient” that allows prediction of the impact of changes in
processor frequency on the end-to-end transaction response
times of multitier applications. We show how frequency
gradients can be measured on a running system in a push-
button manner without any prior knowledge of application
semantics, structure, or configuration settings. Using ex-
perimental results, we demonstrate that the frequency gra-
dients provide accurate predictions, and enable end-to-end
performance-aware DVFS for mulitier applications.

1. INTRODUCTION
DVFS is an energy-saving technique that has been ex-

tremely successful on laptop computers, and holds great
promise for data center environments. The stakes are enor-
mous. Data centers consumed 1.5% of all U.S. electrical
power in 2006 [1], and their rate of energy use is rapidly
growing. CPUs directly consume 30% of the total IT equip-
ment power consumption within a data center [5], and in-
directly affect much more by way of cooling requirements.
Recognizing the potential benefits of DVFS, manufacturers
such as Intel have recently started increasing the granularity
and scope of DVFS control in server processors, such as in
Xeon chips based on the Nehalem architecture.

However, DVFS has important ramifications for multitier
applications that reside in these data centers and provide
web-accessible services ranging from e-commerce to com-
munication. Such services are often crucially dependent on
quick response times to keep users satisfied. Recent stud-
ies [10, 6, 2] and the experiences of large operators [9] have

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

shown the importance of end-to-end response time on user
satisfaction, traffic growth, and, consequently, business via-
bility. To ensure adoption for such applications, DVFS tech-
niques will need to ensure that end-to-end responsiveness is
maintained. However, current DVFS techniques, e.g., those
employed in the Linux kernel (e.g., the ondemand power reg-
ulator), rely only on OS-level, single-machine measurements
such as CPU utilization when making decisions, and ignore
the impact of scaling on end-to-end application metrics.

In this paper, we tackle that problem by introducing a
new metric, the frequency gradient, which quantifies the im-
pact of frequency change on a machine on the end-to-end
response time of a multitier application. For modern multi-
tier applications, this impact may not be obvious. Changing
the frequency of a server that is accessed asynchronously by
user requests, e.g., a logging server, may not have any im-
pact on user-perceived responsiveness. On the other hand,
slowing down a bottleneck server may have a disproportion-
ately large impact. These impacts can change as the bottle-
necks and other dynamic characteristics of a system change,
nevertheless, knowing the impacts enables smart DVFS by
slowing down each host “just enough” to ensure that respon-
siveness constraints and/or service level agreements (SLAs)
are met.

Frequency gradients provide a blackbox alternative to queu-
ing models, which have been the traditional tool used to
make response time predictions for multitier systems. While
queuing models require detailed knowledge regarding the
structure, resource usage characteristics, and communica-
tion patterns of the target system, frequency gradients pro-
vide a much simpler metric that is easy to measure online
with very little knowledge of the target system. In return
for their simplicity, gradients become increasingly inaccurate
as the operating conditions move further from the measure-
ment point. However, the push-button nature of measure-
ment, coupled with techniques that we have developed to
ensure low measurement overhead, ensure that the models
can be recalibrated on-the-fly.

In previous work [8], we developed a similar metric, called
the link gradient, to predict the impact of changes in net-
work link latency on end-to-end application response times.
The link gradient is a point derivative quantifying the rate
of change of response time as a function of a change in link
latency, and provides a linear predictor. We developed a
spectral technique based on injection of small latency fluc-
tuations followed by Fourier analysis to estimate link gradi-

ents at runtime with very low perturbation, while ensuring
high accuracy even in noisy production environments.

In this paper, we extend the fundamental concepts devel-
oped with link gradients to frequency scaling, and make the
following new contributions. a) We develop a metric and
runtime measurement system to predict the impact of CPU
frequency changes on the end-to-end response time of a mul-
titier system. b) We enable the modeling of non-linear re-
sponse time vs. CPU frequency relationships by formulating
gradients as a linear combination of non-linear basis func-
tions that are based on high-level, application-independent
knowledge of system behavior. c) We enable the chaining of
gradients at different levels of granularity. Specifically, we
combine the impacts of changes in CPU frequency on indi-
vidual nodes with the impacts of changes in individual nodes
on the end-to-end behavior to produce end-to-end predic-
tions of the impacts of CPU frequency changes. d) Finally,
we demonstrate that the predictions made using frequency
gradients are accurate regardless of application architecture,
communication patterns, and configuration settings.

2. TECHNICAL APPROACH

2.1 Frequency Gradients
We consider a system consisting of a cluster of host ma-

chines M = (m1, m2, . . . , mm), each of which can be con-
figured to operate at a frequency fi from a range of avail-
able CPU frequencies. The target multitier application A
is hosted on these machines, and consists of components
C = (c1, c2, . . . , cn) of various types, such as web servers,
application servers, or databases. Each machine may host
one or more components. Users interact with the applica-
tion through a set of transactions, such as “login,” “buy,”
and “browse,” each of which utilizes a set of components
according to a transaction-specific call graph. The overall
workload w measured as the number of requests per second
represents a mix of all the transactions.

The responsiveness of the system is measured in terms
of the mean response time r̄t, which is considered as an
unknown function of the machine frequencies fi and the ap-
plication workload w. Let r̄t(x) = F (w, f1, f2, . . . , fm) be
this unknown function, where vector x = (w, f1, f2, . . . , fm)
represents the operating configuration at which the mea-
surement is made. Then, the question we wish to answer is,
“Given the value of r̄t(x0) at the system’s current operating
configuration x0, what is the value of the response time at
a different operating configuration x1, i.e., r̄t(x1)?”.

To answer this question, the general approach we take is as
follows. Let the vector ∆x = x1−x0 = (∆w, ∆f1, . . . , ∆fm)
be the differential change in workload and host frequencies
between the current and the new operating configurations.
Assuming that the function F is differentiable, we can then
use the Taylor expansion to represent the desired response
time as:

r̄t(x1) = r̄t(x0) +

mX
i=1

∂F

∂fi

˛̨̨̨
x0

∆fi +
∂F

∂w

˛̨̨̨
x0

∆w + O(∆x2) (1)

In this equation, the O(. . .) term represents the higher order
derivatives and powers of the frequencies and workload. If
the derivatives ∂F

∂x

˛̨
x0

= (∂F
∂w

˛̨
x0

, ∂F
∂f1

˛̨
x0

, . . . , ∂F
∂fm

˛̨
x0

) of the

response time function (i.e., the gradients) are known at the
current operating configuration x0, one might imagine using

this equation to predict the response time of the system in
the new configuration by ignoring the higher-order deriva-
tives and powers in O(∆x2). However, doing so is justifiable
only if ∆x is small enough to cause the higher powers to
vanish, or if F is linear, thus ensuring that the higher-order
derivatives are zero. Unfortunately, neither is true when
predicting the effect of CPU frequency on response time.
In practice, frequency and workload changes in machines
can be quite large. Furthermore, because frequency scal-
ing affects queuing behavior on each component, the CPU
frequency-response time relationship can be nonlinear.

We solve the dilemma of nonlinearity using two techniques.
First, we decompose the gradients into two sets of partial
derivatives: the“system gradient”captures the rate at which
the system’s end-to-end response time changes with each
per-component response time, while the “machine gradient”
captures the rate at which each component’s response time
changes with its host machine’s frequency and the workload.
As motivated below, the system gradient is linear, while
the machine gradient contains most of the nonlinearity in
F . The second technique recasts the frequency gradients in
terms of “basis functions” with respect to which the gradi-
ents are linear. Next, we describe both gradients in detail.

System Gradients. The system gradient is defined as a
vector (∂r̄t/∂ ¯rt1, . . . , ∂r̄t/∂ ¯rtn) whose elements are the par-
tial derivatives of the mean end-to-end response time of the
system with respect to the mean response time of each com-
ponent, i.e., r̄ti in the system. Intuitively, this gradient is
dependent on the call-graphs associated with user transac-
tions. For example, a transaction that consists of a series
of single nested calls to a web server, an application server,
and a database would be expected to have a system gradi-
ent with all values equal to one. Communication patterns
such as load balancing, caching, and state replication among
servers impact the system gradient. However, the gradient is
expected to remain constant under a range of operating con-
figurations for a given application, thus indicating a linear
relationship. In our previous work [8], we have experimen-
tally demonstrated the linearity of a similar metric: link
gradients that capture the derivative of end-to-end response
time with respect to link latencies between the nodes.

Machine Gradients. Machine gradients capture the rela-
tionship between individual component response times and
their host machines’ CPU frequencies. Because this rela-
tionship can be nonlinear, we do not define machine gradi-
ents with respect to CPU frequency directly. Instead, we
define them with respect to a basis function f̂i(fi, w) that
encapsulates the nonlinearity by ensuring that the change
in the component response time is linear with respect to the
change in the basis function. Formally, the machine gradi-
ent for component ci, or ∂r̄ti/∂f̂i, is defined as the partial
derivative of the component response time with respect to
the basis function f̂i.

To select a suitable basis function f̂i, we rely on the ob-
servation that nonlinearity in the response time frequency
relationship arises mainly from queuing and processor shar-
ing effects. Therefore, we choose the response time function
for a single M/G/1/PS (processor sharing) queue as the ba-
sis function. Specifically, the response time of such a queue

is given by rt = D/f
1−U

, where D is the mean processor demand

generated by each request as measured in cycles, U = a·w/f
is the processor utilization, and a is a transaction-specific

constant. Using this relation, we define the basis function
for node ci as f̂i(f, w) = 1

fi−aiw
. Because the host frequency

fi, application workload w, and host utilization Ui can all
be measured, our framework estimates the constant ai by
direct observation. Although the basis function was chosen
based on high-level design information about the system,
viz., that it uses a time-slice-based CPU scheduler, our ap-
proach is still a black-box one because application-specific
parameters such as service time that require detailed instru-
mentation do not need to be estimated.

Frequency Gradients. In practice, measuring the system
and machine gradients directly is difficult because we can-
not measure or exert direct control over the per-component
response times r̄ti. Therefore, we compose the system and
machine gradients by using the chain rule of derivatives to
form a composite frequency gradient that is not only easy
to measure, but also capable of providing the complete re-
lationship between end-to-end response time and per-host
CPU frequencies. Based on the preceding discussion, we
define the composite predictor as:

r̄t(x1) = r̄t(x0) +

nX
i=1

∂r̄t

∂r̄ti

∂r̄ti

∂f̂i

[f̂i(fi1)− f̂i(fi0)] (2)

Using this equation, the frequency gradient is defined as

the vector
“

∂r̄t
∂ ¯rt1

∂ ¯rt1
∂f̂1

, . . . , ∂r̄t
∂ ¯rtn

∂ ¯rtn

∂f̂n

”
, and can be measured

directly by changing the frequency of each host machine,
observing the changes in end-to-end response time and the
basis functions, and computing the ratio.

Although the above techniques minimize the impact of
nonlinearity to a large degree, large differences between the
new and old configurations cause predictions made using fre-
quency gradients to become increasingly inaccurate. There-
fore, we develop gradient measurement techniques that are
lightweight and minimally intrusive so that gradients can
be recalculated at intermediate configurations cheaply and
on-the-fly.

2.2 Signal Injection and Fourier Analysis
To measure the frequency gradient for a component, we

used the signal injection and Fourier analysis technique pro-
posed in [8]. Within a short time frame (usually several
minutes), we inject a signal into the system by perturbing
the CPU frequency of a server using a square wave pattern
at a chosen frequency. The frequency is chosen such that
the noise in that component of the frequency spectrum is
small so as to improve the estimation accuracy. When the
square wave is high, we lower the working CPU frequency,
and when the square wave is low, we set the working CPU
frequency to its default value. In this manner, we synthesize
a square wave perturbation in f̂i. Finally, we use standard
Fourier transforms to compute the frequency spectrum of
the system’s response time series during the period of sig-
nal injection, and use that frequency spectrum to estimate
the frequency gradient. Use of this technique allows a re-
duction of noise and perturbation by an order of magnitude
(see [8]) compared to a time-domain approach, and thus
makes it possible to recalculate the gradients dynamically
and cheaply while the system is running.

2.3 Online Measurement Framework
Using the basic approach described above, we have imple-

mented a distributed active monitoring framework, shown in

Central

Coordinator

Front-end

Server
Server Clients …

Daemon Daemon

Log

Figure 1: Monitoring architecture

Figure 1, that automatically calculates the frequency gradi-
ents for a distributed application. The framework consists
of a central coordinator and a set of local daemons on each
machine. Each daemon is responsible for monitoring the
CPU utilization of the server, reporting information about
the server to the central coordinator, and changing the fre-
quency of the server CPU when commanded by the central
coordinator. To change the frequency of the server CPU at
runtime, the local daemon uses the CPUfreq system interface
enabled by the userspace CPU frequency scaling governor.
It writes the desired CPU frequency to the scaling setspeed
interface, and reads the available scaling frequencies from
the scaling available frequencies interface. To monitor the
CPU utilization, we use sar to collect the CPU utilization
periodically.

The central coordinator orchestrates the daemons and ex-
ecutes the gradient measurement algorithm. It requires a
list of the machines executing the application’s components
and the location of the end-to-end response time data. The
framework supports applications that have web interfaces.
The central coordinator parses the Apache access logs to
extract a response time series—i.e., timestamp, end-to-end
response time pairs—for each transaction’s URL. No addi-
tional workload beyond the application’s normal workload is
required for measurement purposes, thus ensuring minimal
interference with a running system.

The process of measuring the frequency gradients consists
of two phases: a) the training phase, and b) a set of per-CPU
measurement phases. In the training phase, the coordinator
passively collects the system response times. It uses the
response time series to determine the parameters for the
delay square wave that is to be injected into each individual
CPU. The per-CPU measurement phase is conducted once
for every host machine, and is the active phase during which
a perturbation is introduced into the target server and the
system response is measured. The measurement technique
is similar to the one used for measuring link gradients in [8].

3. EVALUATION
We provide a preliminary evaluation of our approach using

RUBiS—a well-known eBay-like auction application [7]—
widely used in multitier system benchmarks. We used the
3-tier Java-servlet version of RUBiS with a front-end Apache
server (WS), two Tomcat application servers (TA and TB),
and a back-end MySQL database server (DB). Our hetero-
geneous testbed consisted of 2 types of machines: an Intel
E8400 Core 2 Duo machine that was used to run Apache
and three AMD Athlon 64 3800+ machines for the Tom-
cat and MySQL instances. The Intel processor had 4 op-
erating frequencies (2.0, 2.33, 2.67, and 3.0GHz) while the
AMD chip had 5 frequencies (1.0, 1.8, 2.0, 2.2, 2.4 GHz).
We emulated the client workload using multiple indepen-
dent Poisson arrival processes in which the emulated users
randomly submitted requests for information about an item

2 2.2 2.4 2.6 2.8 3
16

17

18

19

20

21

CPU frequency (GHz)

Re
sp

on
se

 ti
m

e
(m

ill
ise

c)

Exp. (60)
Pred. (60)
Exp. (50)
Pred. (50)

Exp. (40)
Pred. (40)
Exp. (30)
Pred. (30)

(a) Apache

1 1.5 2 2.5
15

20

25

CPU frequency (GHz)

Re
sp

on
se

 ti
m

e
(m

ill
ise

c)

Exp. (60)
Pred. (60)
Exp. (50)
Pred. (50)

Exp. (40)
Pred. (40)
Exp. (30)
Pred. (30)

(b) Tomcat

1 1.5 2 2.5
16

17

18

19

20

21

22

CPU frequency (GHz)

Re
sp

on
se

 ti
m

e
(m

ill
ise

c)

Exp. (60)
Pred. (60)
Exp. (50)
Pred. (50)

Exp. (40)
Pred. (40)
Exp. (30)
Pred. (30)

(c) MySQL
Figure 2: End-to-end response time predictions under workload and frequency changes

Transaction Apache Tomcat MySql
ViewUserInfo 0.743 (1.08) 5.79 (0.19) 1.87 (0.19)

ViewItem 0.36 (0.88) 4.82 (0.15) 2.03 (0.16)

Table 1: RUBiS Frequency Gradients (msec/GHz−1)

or about another user with equal probability. The client
emulator and the central coordinator were run on two AMD
Athlon XP 2400 machines. All machines had 2GB of RAM,
were connected using a 100Mbps Ethernet switch, and ran
an unmodified Ubuntu Linux 8.04 installation.

Using the measurement framework, we computed the fre-
quency gradients in a baseline configuration with a single
server in each tier, with all CPUs running at their third
lowest frequency, i.e., 2.66GHz and 2.0GHz for the Intel and
AMD CPUs respectively, and with a client workload of 40
req/sec. The values of the gradients for two different trans-
action types and all three servers are shown in Table 3 with
standard deviations of the estimates shown in parentheses.
Some observations are of note. First, the gradients depend
on both the transaction and the server type, thus reflecting
the different ways in which each transaction uses different
types of servers. Based on the gradients, one can infer that
both transactions are computationally intensive rather than
database intensive (larger Tomcat gradient as compared to
MySQL). Second, the standard deviation for the Apache
gradient is very high. This is because load imposed on the
Apache server by both transactions is very light, and any
changes in its CPU frequency do not change the end-to-end
transaction response time perceptibly, causing noise to dom-
inate the measurement. Therefore, whenever the standard
deviation is large, we infer that the gradient is small, and
set it to zero.

Results of the predictions using the gradients are shown in
Figure 2. In these experiments, we use Equation 2 to predict
the end-to-end mean response time of the system, averaged
across all transactions, under different workloads, and with
a frequency change in a single CPU. Then, we deployed the
changed configuration and compared the prediction against
the measured end-to-end response time. Each graph re-
flects results across a range of workloads (30-60 req/sec)
for a single CPU frequency change in the server indicated
by the graph’s title. The graphs show that the difference
between the prediction and measurements increases as the
frequency moves further away from the measurement config-
uration (2.66GHz for the Apache server, and 2.0GHz for the
Tomcat and MySQL servers). Nevertheless, in all cases, the
95% confidence intervals for the predicted response time val-
ues overlap with the 95% confidence intervals for the mea-
sured results, thus indicating that the frequency gradient
model provides good agreement with experiment. The confi-
dence intervals associated with the predictions are due to the

30

32

34

36

38

40

42

44

46

48

ALL2.0
ALL1.0
ALL1.8
 TA1.0
 TB1.0

R
es

po
ns

e
tim

e
(m

ill
is

ec
)

Scenarios

Measurement
Prediction

(a) Load balancing

20

22

24

26

28

30

32

Async
 Sync

R
es

po
ns

e
tim

e
(m

ill
ise

c)

Scenarios

Basic
 Exp.
 Pred.

(b) State replication

Figure 3: Different communication patterns

standard deviation in the frequency gradient measurements
shown in Table 3. In order to increase prediction accuracy,
the confidence intervals could be reduced by increasing the
length of the gradient measurement phase. Our setting of
the Apache frequency gradient to zero because of excessive
variance is also validated by the results, which show no ap-
preciable change in the transaction end-to-end response time
due to changes in the Apache server’s CPU frequency.

Next, to show the blackbox applicability of the frequency
gradient metric when application configuration and charac-
teristics change, we show experimental results under two
common deployment configurations. In the first configura-
tion, we deployed two Tomcat servers in a non-replicated
load-balanced configuration using Apache’s mod jk module.
We measured the frequency gradients in a base setup with
the same frequencies as the previous experiment, but with
a larger client workload of 80 req/sec to account for the
increased capacity of the system. Then, we changed the
frequencies of multiple CPUs at a time and used the fre-
quency gradients to predict the end-to-end transaction re-
sponse times in the new settings. Finally, we deployed the
system to run at the new frequencies and measured the ac-
tual mean end-to-end response time across all transactions
to compare against the predictions. Figure 3(a) shows the
predicted and experimental mean end-to-end response time
results for several frequency settings. In the configurations
ALL1.0, ALL1.8, and ALL2.0, we set the frequencies for all
AMD CPUs to their lowest (1.0 GHZ), second lowest (1.8
GHz), and third lowest values (2.0 GHz), respectively. In
the configurations TA1.0 and TB1.0, we set the frequencies
of the Tomcat A and B servers to their lowest value (1.0
GHz), respectively. Figure 3(a) shows that the predicted vs.
measured response times show good agreement.

For the final set of experiments, we configured the two
Tomcat servers in a primary-backup replicated session-state
setup using two different replication settings. In the syn-
chronous setting, the primary updates the backup server
before replying to the client, while in the asynchronous set-
ting, the update is performed asynchronously after a reply

to the client is sent by the primary. Since RUBiS does not
normally use session state, we modified the transactions to
exercise this facility. Then, we computed frequency gradi-
ents for the backup Tomcat server under both settings with
a frequency of 2.0GHz and a workload of 100req/sec, and
compared the gradient predictions of end-to-end response
time vs. experimental measurements when the frequency
of the backup Tomcat server was changed to 1.0GHz. The
end-to-end response time in the original measurement con-
figuration, the frequency gradient predictions, and the cor-
responding experimental measurements are shown in Fig-
ure 3(b). As expected, there is no impact of the backup
server frequency change on the end-to-end response time
in the asynchronous replication setting because the primary
replies to the client before it updates the backup. In the syn-
chronous setting however, a change in response time can be
seen. Nevertheless, in both settings, the frequency gradients
can predict the impact of the frequency change accurately.

Collectively, these experiments demonstrate the ability of
the frequency gradient metric to accurately predict the im-
pact of DVFS on end-to-end application response time in a
blackbox manner under varying frequencies, workloads, and
application settings.

4. RELATED WORK
To the best of our knowledge, [11] is the only work that

considers end-to-end performance impact when performing
DVFS for multitier applications. This work assumes a pipe-
lined, and uses a traditional M/M/1 queuing network model
for performance prediction. To obtain the parameters for
the model, server instrumentation along with offline profil-
ing is used. In contrast, our work is not limited to pipelined
systems as demonstrated by the Tomcat replication results,
and is a blackbox approach that does not require knowledge
of application topology, configuration, or instrumentation
of server components. Independently of DVFS, the general
problem of performance prediction in multitier systems is
a well-studied one. In [4, 12], traditional modeling meth-
ods are used to associate performance metrics (i.e., response
times) with variables representing the workload being pro-
cessed, the machines’ architecture, and the communication
patterns. The profile is then used to predict the system per-
formance during deployment. [3] and [13] use queuing net-
works and models to estimate the end-to-end response time
of multitier Internet applications. Layered queuing networks
(LQN) [14] provide an especially appropriate formulation to
model multitier systems. However, all of these methods ei-
ther require offline profiling of the system to compute the
necessary parameters and/or a detailed knowledge of the
system architecture and configuration settings.

5. CONCLUSIONS
DVFS is a well-known technique for reducing the power

usage of a computer by slowing down the CPU. However, de-
termining what frequency to use so that a multitier applica-
tion’s response time guarantees are still met is a challenging
problem and cannot be solved simply by adjusting frequency
based on local utilization at each machine. In this paper we
have presented a simple measurement-based technique that
can be used to predict the response time of a multitier appli-
cation for any CPU frequency assignments in the system. It
is based on lightweight runtime measurements that capture

the impact of CPU frequency changes on the end-to-end re-
sponse time of the system. We demonstrated the accuracy
of these predictions using a number of application deploy-
ment scenarios. Our future work will include development
of a runtime controller that optimizes the energy usage of a
data center based on the frequency gradient.

6. REFERENCES
[1] EPA Report on Server and Data Center Energy

Efficiency, Aug 2007. http://www.energystar.gov/ia/
partners/prod development/downloads/
EPA Datacenter Report Congress Final1.pdf.

[2] The psychology of web performance, May 2008.
http://www.websiteoptimization.com/speed/tweak/
psychology-web-performance/.

[3] Bhulai, S., Sivasubramanian, S., van der Mei, R.,
and van Steen, M. Modeling end-to-end response
times in multitier Internet applications. Man. Traffic
Perf. in Converged Networks 4516 (2007), 519–532.

[4] Bodik, P., Sutton, C., Fox, A., Patterson, D.,
and Jordan, M. Response-time modeling for
resource allocation and energy-informed SLAs. In
Proc. Workshop on Statistical Learning Techniques for
Solving Systems Problems (MLSys) (2007).

[5] Castro-Leon, E. Musings about data center energy
usage, Sept 2008. http://communities.intel.com/open
port/community/openportit/ipip/blog/2008/09/07/
musings-about-data-center-energy-usage.

[6] Ceaparu, I., Lazar, J., Bessiere, K., Robinson,
J., and Shneiderman, B. Determining causes and
severity of end-user frustration. Int. Journal of
Human-Computer Interaction 17, 3 (2004), 333–356.

[7] Cecchet, E., Marguerite, J., and Zwaenepoel,
W. Performance and scalability of EJB applications.
In Proc. OOPSLA’02 (2002), pp. 246–261.

[8] Chen, S., Joshi, K., Hiltunen, M., Sanders, W.,
and Schlichting, R. Link gradients: Predicting the
impact of network latency on multitier applications. In
Proc. INFOCOM (Apr. 2009).

[9] Farber, D. Google’s Marissa Mayer: Speed wins.
ZDNet Between the Lines, Nov. 2006. Accessed Apr.
2009. http://blogs.zdnet.com/BTL/?p=3925.

[10] Galletta, D., Henry, R., McCoy, S., and Polak,
P. Web site delays: How tolerant are users? J. of the
Assoc. for Information Sys. 5, 1 (2004), 1–28.

[11] Horvath, T., Abdelzaher, T., Skadron, K., and
Liu, X. Dynamic voltage scaling in multitier web
servers with end-to-end delay control. IEEE Trans. on
Comp. 56, 4 (July 2006), 444–458.

[12] Stewart, C., and Shen, K. Performance modeling
and system management for multi-component online
services. In Proc. NSDI (2005), vol. 2, pp. 71–84.

[13] Urgaonkar, B., Pacifici, G., Shenoy, P.,
Spreitzer, M., and Tantawi, A. An analytical
model for multi-tier internet services and its
applications. In Proc. ACM SIGMETRICS (2005),
pp. 291–302.

[14] Woodside, M., Neilson, J., Petriu, D., and
Majumdar, S. The stochastic rendezvous network
model for performance of synchronous
client-server-like distributed software. IEEE Trans. on
Comp. 44, 1 (1995), 20–34.

