Automatically Generating Bursty Benchmarks for
Multi-Tier Systems

Amir Kalbasi
University of Calgary
Calgary, AB, Canada

akalbasi@ucalgary.ca

Giuliano Casale
SAP Research
CEC Belfast, UK
giuliano.casale@sap.com

ABSTRACT

The performance of multi-tier systems is known to be de-
graded by burstiness. Therefore methods are needed to
create benchmarks with controllable levels of burstiness for
stress testing and system validation. This paper proposes a
novel model-based technique to construct such benchmarks
in an automated manner. The technique permits the simul-
taneous matching of request mix and session service time
burstiness. Case studies on a TPC-W testbed demonstrate
the effectiveness of the approach.

1. INTRODUCTION

Burstiness refers to temporally dependent workload request
patterns that cause serial correlations in service demands at
various system resources. Recent work has suggested that
burstiness is prevalent in multi-tier systems [5]. Further-
more, bursty workloads are known to stress such systems
more than workloads with random patterns. For exam-
ple, burstiness can trigger frequent bottleneck switches be-
tween system resources that limit scalability and make per-
formance prediction a challenging task [4]. Consequently,
techniques are needed to incorporate burstiness in a con-
trolled manner within the synthetic workloads used for stress
testing and system sizing exercises. Unfortunately, due to
the session-oriented nature of workloads, this is a challenging
task for multi-tier systems. A synthetic workload for such
systems must simultaneously match many different charac-
teristics such as request mix and session inter-arrival time
distribution while using only semantically correct request
sequences. Furthermore, the creation of controlled bursti-
ness requires understanding of the specific characteristics of
the service demand placed by the requests at each tier of
the architecture. In this paper, we propose an automated
approach to solve the problem.

The problem under study can be formulated as follows. Con-
sider a multi-tier system with a pre-existing set of test suites
Bi,...,Bj,...,By. Each test suite is a stress testing appli-
cation that can submit to the system a sequence of sessions
and is characterized by a particular mix of session types.
Each session type is a semantically correct sequence of re-
quests. Each request is submitted after completion of the
previous request in the session, possibly with a think time
between the requests. We want to generate a benchmark
B* that submits a sequence of sessions to the system by
modulating the session generation of the pre-existing test
suites. The goal of the benchmark B* is to generate ses-
sions selected from the pre-existing test suites such that a
user-specified session type mix is achieved while simultane-

Diwakar Krishnamurthy
University of Calgary
Calgary, AB, Canada
dkrishna@ucalgary.ca

Jerry Rolia
Automated Infrastructure Lab
HP Labs, Bristol, UK
jerry.rolia@hp.com

ously causing user-specified levels of burstiness in resource
consumption at the system’s different tiers.

The methodology we propose to solve this problem involves
analytical modeling of the resource consumption of each ses-
sion type and the formulation of an optimization program
that seeks for the best combination of pre-existing test suites
that can generate the desired session type mix and bursti-
ness. Our approach can be used to support performance
sizing, controller tuning, and performance debugging exer-
cises. Sizing requires representative burstiness in synthetic
test workloads to ensure a system can handle its load with
appropriate response times. In shared virtualized environ-
ments application resource allocations may be governed dy-
namically by automated controllers. Our approach can be
helpful in ensuring that these controllers are tuned appropri-
ately to react effectively to bursts in application workloads.
Performance debugging also benefits from fine control over
burstiness. For example, it can help determine the impact
of burstiness on cache misses and virtual memory swapping
effects that are not visible with random workloads.

The approach presented in this paper is motivated by the
previous work of Krishnamurthy et al. on synthetic work-
load generation for session-based systems [3]. The work de-
veloped the Session-Based Web Application Tester (SWAT)
tool. The tool includes a method that exploits an algebraic
space to automatically select a subset of pre-existing seman-
tically correct user sessions from a session based system,
each with a particular URL request mix, and computes a
ratio of sessions to achieve specific workload characteristics.
For example, the technique can reuse the existing sessions to
simultaneously match a new URL request mix and a partic-
ular session length distribution and to prepare a correspond-
ing synthetic workload to be submitted to the system. Our
current work exploits and extends these concepts. SWAT
can be used to find a mix of session types that matches a
request mix and other session properties. The approach pre-
sented in this paper then matches a desired level of bursti-
ness for session service demands.

Summarizing, the proposed methodology has the following
main advantages: (i) It can cause controlled levels of bursti-
ness in service demands. To the best of our knowledge we
are not aware of any other benchmarking approach that sup-
ports the ability to explicitly control the level of burstiness
in service demands. (ii) It is automated, combining exist-
ing non-bursty, semantically correct sessions of benchmarks

for the definition of benchmarks with burstiness based on
the solution of an optimization program; (iii) It has wide
applicability since it only requires information about mean
demands of sessions within each benchmark. Such demands
can be deduced directly or using techniques such as linear
regression [1], operational analysis [1].

2. METHODOLOGY

This paper employs a composite approach to construct the
benchmark B*. A PH-type group service demand model
characterizes the expected service demand of a random ses-
sion for each test suite and for each server in the system.
The term group denotes the set of sessions generated by a
given test suite. A discrete-time Markov chain P, called the
session submission policy, determines the mix and ordering
of sessions. A Markovian Arrival Process (MAP) [6] speci-
fies the service demand burstiness model used to predict the
system’s service demand burstiness as caused if the sessions
were generated by P. Finally, a nonlinear optimization pro-
gram iteratively searches for a P to match desired mix and
level of burstiness. The P matrix obtained in this manner
is used to drive the session generation from B*.

2.1 Group Service Demand M odel

The group service demand model uses resource utilization
measurements to estimate the service demand of sessions
generated by each test suite B;. First, we estimate the mean
service demand of each session type in the group. Next, we
derive a compact analytical model that summarizes infor-
mation for each test suite. The class of analytical models
we consider are PH-type distributions [6], which are gener-
alizations of well-know models of service demands such as
Erlang, hypo-exponential, and hyper-exponential distribu-
tions. The main difference between a PH-type distribution
and these models is that it allows more flexibility and higher
fitting accuracy, but at the expense of an increased number
of states in the underlying Markov model.

Resource utilization measurements are obtained by running
each test suite Bj; in isolation and collecting traces of re-
source usage and session completion times for each server 1.
Let n be the number of completed sessions in the jth sample
interval and assume that n; of them are of type ¢t. Then, the
measured utilization samples U; at server i during the jth
sample period are related to the per-session resource con-
sumption by the utilization law [1] U; = 23:1 mine/L,
where L is the time duration of the sample interval, T is
the number of session types used in Bj, and m;: is the
mean service demand of session type t at server i. We
can measure the mean service demands m; ¢ of the differ-
ent sessions types of the test suite B; directly or using a
multivariate linear regression of samples obtained over the
different intervals [1]. Based on the estimated mean ser-
vice demands m; ¢, we fit a PH-type distribution H*I that
describes the service demand placed by a random session
of Bj on server i. If we indicate with (;; the probability
that B; generates a session of type t such that the vec-
tor B; = (Bit,--sBits -2 Bir)s Yooy Bi = 1, specifies
the miz of sessions in the benchmark Bj;, then the problem
of modeling B; session service demands amounts to defin-
ing a PH-type distribution that matches the moments (e.g.,
mean, variance, skewness, ...) of the m;; service demands
accounting for the mix 3. For instance, if X represents the

service demand of a random session of Bj, then the mean
is B[X] = 3}, Bj4mi: and we approximate the variance
as Var(X) = EZ;I Bj,t(mi+)* — E[X]? which is exact if the
real demands are deterministic. Based on mean and vari-
ance estimates®, we describe compactly the distribution of
session service demands for benchmark B; at server ¢ by a
PH-type model H"/ which fits these moments.

2.2 Service Demand Burstiness M odel

We define Markovian arrival processes (MAPs) [6] to pre-
dict the service demand burstiness created by sessions that
are randomly picked from the test suites Bi, ..., Bj, ...,
Bj. The approach relies on the policy P that is defined fur-
ther in the next subsection. The MAPs are used to assess
whether a certain P is a good candidate for generating the
desired level of burstiness for the benchmark. We use MAPs
instead of PH-type models because the latter can only char-
acterize the distribution, but not the time series of service
demands as instead supported by MAPs. It would therefore
be impossible to describe with a PH type model the bursts
in service demands over time.

The service demand burstiness model is summarized by a
function f!(H* P) that, given the Markov chain P and
the PH-type models H*/ of the test suites By, ..., Bj, ...,
By, returns a MAP to predict properties of the time series
of session service demands of B* at server ¢. The transition
probability p;; of the Markov chain P = {p; ;},, , is de-
fined such that if the last session of B* has been generated
by the test suite B;, then B* uses with probability p; ; the
test suite B; to generate the subsequent session. Henceforth,
we represent PH-type distributions using the (Do, D1) no-
tation of Markovian arrival processes [6] and we denote the
Dy and D; matrices of H*Y by Hy? and H}’, respectively.
The interpretation of Do and D1 is as follows. The MAP de-
scribes the service times received by a job and its active state
changes over time according to the state transition rates in
Do and D;. The transitions in D1 represent completion of
the current job, while all remaining transitions are placed in
Do.

The function f*(H*J, P) that provides the service demand
burstiness model of a random session of B* at each server i
can be defined using the compositional properties of Markov
processes. By modulating the different test suites B; with
a Markov chain P, the service demand model of B* can
still be described by a Markov process: this enables an-
alytical tractability of burstiness properties and it is the
main motivation behind our choice of using the Markov
chain P for session modulation. In fact, from the defini-
tion of Dy and D; given above, it follows that the demand
of B* at server i is described by the MAP with matrices

While only a few cases such as deterministic and exponen-
tial distributions are fully described by the first two mo-
ments, we note that we are modelling session type demands
and not per request demands. For our case study session
demands were nearly deterministic.

T i1 i i J
D¢ = diag(H ", ..., Hy?, ... ,Hy") and
i,1 i1 i,1
praHY pioHY ..o pisHY
0,2 0,2 0,2
p21Hy p2,2H; p2,sHy

1= : : : - @

piaHYT pioHYY pssHY

The above equations uniquely specify the f(H*/,P) func-
tion that translates the service demands of sessions of the
test suite B; into those of the benchmark B*. The D} ma-
trix specifies that the service demands of a session generated
by B, follow the PH-type distribution specified in H*?; the
D! matrix definition, instead, imposes that a session of B;
is followed with probability p;, by a session generated from
Bj. thus modeling the modulation of the Markov chain P.
The fundamental result achieved by this step is that, given
the MAP process (D, DY), it is easy to evaluate burstiness
in the demands for sessions of B* as we explain below.

2.3 Searching for a p to Match Burstiness

Finally, we use a nonlinear optimization program to search
for a policy P that provides the desired levels of burstiness
in the service demands. Our approach is to evaluate iter-
atively the burstiness generated by several Markov chains
P and choose the one that minimizes the distance between
the predicted burstiness and the target one specified by the
user. The optimization is constrained on the benchmark B*
generating a predefined mix 8% = (67,05,...,037) of the
test suites B; producing a mix of sessions that is considered
representative of the intended usage of the system. The 38~
vector can be determined using, e.g., the SWAT tool [3] to
match a customers required request mix. Different objective
functions can be defined according to the preferred bursti-
ness descriptor, e.g., index of dispersion?, lag-1 autocorrela-
tion coefficient, or the decay rate of the autocorrelations.

Due to limited space, we exemplify the generation of bursti-
ness at a server ¢ that matches a given index of dispersion
value Iigrgetr. We use the following nonlinear optimization
program:

rrgnz =1|I- Itmget| s.t. (2)
(DmDZ) frE) (3)
—1=2 (D (D}, + D' + ewe)D1e> (4)

S =me(~Dg) " (5)

Te = Te(— DE)_IDh (6)

Pe = ¢; (7)

P > 0; (8)

B'P = 3% 9)

where e is a column vector of size J composed of all ones.
The search is on the entries of the matrix P that specifies
B*. The program tries to minimize the absolute difference
between the target index of dispersion and the one estimated

2Under positive autocorrelations, burstiness levels can be
summarized by the index of dispersion I = CV?*(1

2> 02, p(k)), where CV is the coefficient of variation of the
service demands, p(k) is the lag-k autocorrelation coefficient
of the service demands, see [4] for further information.

for the service demands at server i based on the f*(H"/ P)
mapping, where P indicates the current estimate of the non-
linear program for the Markov chain transition matrix. The
constraints are of three types: (4)-(6) are standard formu-
las for computing the index of dispersion I applied to the
Markovian arrival process (Dj, D%); (7)-(8) impose that P
is a stochastic matrix; finally, (9) imposes the session type
mix 3% by constraining the steady-state of P.

The nonlinear program (2)-(9) returns a Markov chain P
that achieves the stated goal of this paper of creating a
benchmark B* with controlled burstiness in a tier i. Al-
though the optimization program is nonlinear, we have found
it in practice easy to solve. In the experiments reported
in Section 3, we obtained good solutions in less than one
minute for all experiments including the time for restart-
ing the optimization program from a different random ini-
tialization point when it fails to return a P that matches
requirements. We remark that if one is interested in gener-
ating controlled burstiness in all tiers simultaneously, it is
possible either to consider multiple objective functions, each
representing the index of dispersion of a different server, or
to insert burstiness into the aggregate service demand of the
sessions, i.e., the round-trip time of a session when executed
in isolation on the system. For instance, for a system with
a front server and a database server, the aggregate service
demand is R = Sys + Sap, where Sys and Sg, are service
demands at the two servers. We illustrate the effectiveness
of this approach in the first case study.

3. VALIDATION EXPERIMENTS

To show that our benchmark generation approach is effec-
tive in creating controlled burstiness, we present a case study
that considers a particular combination of the ordering and
shopping mix benchmarks of TPC-W. The resulting bench-
mark B is run on a real testbed. The testbed consists of a
front server node, a database server node, and a client node
connected by a non-blocking Ethernet switch that provides
a dedicated 1 Gbps connectivity between any two machines
in the setup. The front server and database server nodes
are used to execute the TPC-W bookstore application im-
plemented at Rice University. The client node is dedicated
for running the httperf Web request generator. All nodes
in the setup contain an Intel 2.66 GHZ Core 2 CPU and 2
GB of RAM. The Windows perfmon utility is used to gather
CPU, disk, memory, and network usage at the server nodes;
httperf provides detailed logs of end user response times. In
all our experiments we noticed very little disk, paging, and
network activity at the server nodes.

Throughout the experiments, we have used two pre-existing
test suites created to follow the shopping and ordering mixes
specified by TPC-W. The matrix P that results from the
benchmark generation step is used to construct a trace of
10,000 sessions with desired mix and burstiness and that
combines the shopping and ordering sessions. Finally, httperf
is used to submit the session trace to the system. Due to
limited space, we report below only two validation experi-
ments, but we remark that we have considered several other
experiments resulting in qualitatively similar results to those
reported below.

front server demand | DB server demand
shopping | mean CV skew | mean CV skew
measured [0.290 0.575 2.671 | 0.097 7.590 4.509
PH-type | 0.290 0.575 1.665 | 0.097 7.590 4.509
ordering | mean CV skew | mean CV skew
measured | 0.131 0.805 1.797 | 0.623 1.761 2.530
PH-type | 0.131 0.806 1.798 | 0.623 1.761 2.531

Table 1: Benchmark service demand models. Mean
values are expressed in seconds.

3.1 Validation of Service Demand and Bur sti-
ness M odels

We consider a benchmark B* defined by a mix of sessions
of shopping (s) and ordering (o) type. The mix is balanced
with 85 = 85 = 0.50, and we assume the Markov chain P
assigned such that shopping (resp. ordering) sessions have
a probability ps.s = 0.995 (resp. po,o = 0.995) that the next
session generated after them will be again of shopping (resp.
ordering) type. The aim of this case study is to validate the
prediction accuracy of the models proposed in Sections 2.1
and 2.2. Since it is hard to obtain direct measurement of
the service demands, we focus on utilization and aggregate
demand measurements for the sessions executed in isolation.

For the group service demand model definition, we have run
in isolation the shopping and ordering test suites and esti-
mated the mean session demands m; ¢ for each of the session
types used in the these mixes. Table 1 presents results. The
table shows the estimated moments for the different ser-
vice demands and the respective moments of the PH-type
distributions H*? we have fitted; the number of states we
have used in the PH-type models is no greater than 5. The
results indicate that the PH-type distributions match very
well mean and CV of the measured service demands, while
they slightly underestimate the value of the skewness proba-
bly due to the difficulty in modeling in a Markovian setting
the nearly-deterministic demand of individual session types.
Using the PH-type distributions H*/ and the Markov chain
P, we have then defined the MAPs that describe the service
demands at the front server (DJ}*, D/*) and at the database
server (DE?, D{?). We have also defined a MAP to describe
the aggregate service demand of the sessions: assuming that
each session visits once the front server and database server
before completing execution, the MAP that captures the ag-
gregate demands has (Do, D1) representation, denoted by
(Ro,R1), which is a combination of Hf** H®?® Hf*°
H%° weighted by the probabilities Do,o and ps s as in (1).

Figure 1(a) compares the cumulative distribution function
(CDF) for the aggregate service demands of the sessions with
the ones predicted by the (Ro, R1) model. The distribution
of the MAP matches very accurately the empirical distribu-
tion of the aggregate service demand, thus suggesting the
effectiveness of our benchmark service demand models in
capturing the distribution of the service demands. Using
(Ro,R1), we have also compared the burstiness of the ag-
gregate service demands predicted by the model with the
one measured on the real system using the autocorrelation
function as a descriptor of burstiness [5]. The result (not
shown in the figure due to limited space) indicates good
prediction accuracy, with the aggregate service demand au-

tocorrelation coefficients quickly decaying to zero for both
the model and the measurements, and with the lag-1 coeffi-
cient being p(1) = 0.028 for the measured aggregate service
demands and p(1) = 0.039 for the (Ro, R1) model.

The results of the aggregate service demand analysis indi-
rectly suggest that the models developed in Section 2 cap-
ture per-tier service demands, otherwise it would be hard to
predict accurately aggregate service demands distribution
and burstiness. To further validate accuracy, we have also
performed a trace-driven analysis of the system to compare
the properties of the measured utilizations with those pre-
dicted by the MAP models. Figure 1(b)-(c) show the auto-
correlation function of the measured and modeled utilization
for the front server and database server, respectively. The
autocorrelations of the model are estimated by averaging the
autocorrelations over 100 random experiments; conversely,
the sample path curve shows a representative example of au-
tocorrelation estimate for one of these random experiments.
The results are qualitatively similar for both servers suggest-
ing that the P modulation impacts equally on the two tiers.
For low lags, model and sample path autocorrelations are
in very good agreement with the TPC-W trace. Low lags
are the most significant for burstiness, as they measure the
similarities of consecutive sessions to pack into bursts, while
high lags are mostly related to the length of these bursts.
The autocorrelation coefficient values for lags greater than
10 seem instead to suffer significant noise due to limited
measurements available from utilization sampling; the pres-
ence of noise is proved by the difference between the sample
path curve and the model results averaged over 100 experi-
ments. Yet, the good agreement of the sample path with the
trace proves that sample paths of the MAP model are rep-
resentative of system behavior observed in real experiments.
Summarizing, the experiment in this section suggest that
the proposed PH-type and MAP model can summarize and
predict effectively the properties of the demands in both the
pre-existing benchmarks and in the composed benchmark
B*. The next case study focuses instead on the quality and
practical impact of the burstiness generation methodology.

3.2 Generation of Burstiness and its I mpact

We consider the same mix of ordering and shopping sessions
evaluated in Section 3.1, but we now focus on generating
benchmarks to assess the performance under burstiness con-
ditions and compare it with respect to the non-bursty case.

Solving the nonlinear optimization algorithm defined in Sec-
tion 2.3 with the fmincon function of MATLAB 7.6.0, we
have obtained two policies Pron—bursty and Phrigh—bursty
that both combine shopping and ordering sessions with mix
B% = 5 = 0.50. The two benchmarks differ only for the in-
dex of dispersion values in the aggregate demand. The non-
bursty benchmark has index of dispersion I = 1.14, which
is a case corresponding to the removal of burstiness from
the aggregate demand by imposing a zero value for all the
autocorrelation coefficients. This also results in negligible
burstiness in the service demands of the servers: the ex-
pected index of dispersions at the front-server and at the
database server are Iy, = 0.82 and I4, = 2.11, respectively.
Note that the scale of the index of dispersion is comparable
to the scale of the squared coefficient of variation CV2. The
high-burstiness benchmark has index of dispersion I = 50,

09} — — — trace |
model

cdf P[aggr. dem. <]
autocorrelation coefficient

model 05 model
trace trace

— — — sample path 0.4 — — — sample path

autocorrelation coefficient

(a) CDF Aggregate Demand (sec)

4 0o 10 20 30 40

(b) Front Server Utilization

50 60 70 80 90 100 O 10 20 30 40 50 60 70 80 90 100
lag lag

(c) DB Server Utilization

Figure 1: Experimental results for the mix of shopping and ordering sessions.

Ipn av

0.9 i i ; . ‘ o.gl{"vl“y \”J”’nﬂ’r/ufﬂ‘

0.8{%““"[]" 1 ‘1 | ; “ ﬂ H\I 0.8‘(i

0.7 ﬂ il ‘h‘ l‘HH \HH H\ Jﬁ "M{ ' “I'HN' 1 'M 0.7 |
§ 0.6 ‘”“ ’m”“m““ jm\ Hn’\""\ 'M el ”J”:\‘N\H'ﬁ”r\m ml “”u'l 506 |
.E os i ‘.“" h, ll ”, H\l vlﬁ ¥ / ‘u Mn i U‘ '§ 05 front|
2 ol Ty £
< 04 R] i oyt g o !

0.3

0.2

0.1

l,{ RN
h | "F“" v‘”‘ﬂl‘lll ret
| '1‘ "\‘ ’\ N
i " Sle-2 \
! i o \
i | < \
% le-3 ‘\
O
v no burstiness |
Te-4 — — — burstiness, =50 |
|
le-5 !
200 250 300 0 Tel Te2 Te3 le4 1e5

0 50 100 150 200 250 0 50 100
utilization sample

(b) I =50, High Burstiness

utilization sample

(a) I =1.14, No Burstiness

t — request response times

(c) CCDF Response Times

Figure 2: Impact of burstiness on the performance of the TPC-W testbed.

which creates large burstiness both in the aggregate and
per-server service demands. The expected dispersion at the
front server is Iys = 597.34 and at the DB is I4, = 2242.9.

Figure 2 compares the performance impact of the two bench-
marks on the TPC-W system for an experiment with Pois-
son session arrivals and multiple-concurrent sessions in ex-
ecution. Even though both benchmarks have the same ses-
sion type mix, session inter-arrival time distribution and ap-
proximately the same server utilizations, the bursty bench-
mark stresses the system differently from the non-bursty
benchmark. From Figures 2(a)-(b), the front and DB server
CPU utilizations display a more non-uniform pattern for
the bursty benchmark. In fact, Figure 2(b) shows that the
bursty benchmark causes a bottleneck switch around the
100th utilization sample resulting in the front server be-
coming the bottleneck, a behavior absent in Figure 2(a).
Bottleneck switch is typical of burstiness, but it has never
been found in the ordering and shopping mixes of TPC-
W [4]. It is also remarkable that the heightened contention
in the first part of the experiment among sessions of ordering
type caused the server to drop several connections leading
to a 25% drop in throughput relative to the non-bursty case.
From Figure 2(c), the tail of the response time distribution
for those requests that were not dropped is heavier for the
bursty benchmark proving burstiness degradations. Addi-
tional plots providing further detail on the response times
received by each session type are given in [2]. Summarizing,
this experiment validates the capability of our approach to
insert burstiness in workloads and help uncover bottlenecks
that are not exposed with non-bursty benchmarks.

4. CONCLUSION

We have proposed a model-based methodology for automatic
generation of benchmarks with customizable levels of bursti-

ness in the service demands. Our methodology extends ex-
isting approaches for benchmark synthesis such as SWAT [3].
Experiments on a real TPC-W testbed have shown that
our models are very accurate in predicting service demands
and their burstiness at the different tiers. We have shown
a case where the ordering and shopping mixes of TPC-W
have been combined to insert controlled burstiness in the
demands resulting in stress conditions for performance that
are not shown by non-bursty combinations of the two mixes.

We plan to further develop and validate this new approach
within a framework that aims to characterize, synthesize
and predict the impact of burstiness for multi-tier systems.
We also plan to investigate the various kinds of system level
degradations that can be caused by burstiness.

5. REFERENCES

[1] G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi.
Queueing Networks and Markov Chains. Wiley, 2006.

[2] G. Casale, A. Kalbasi, D. Krishnamurthy, and J. Rolia.
Automated Stress Testing of Multi-Tier Systems by
Dynamic Bottleneck Switch Generation. University of
Calgary TR SERG-2009-02, April 2009.
http://www.enel.ucalgary.ca/ dkrishna/SERG-2009-02.pdf

[3] D. Krishnamurthy, J. A. Rolia, and S. Majumdar. A
synthetic workload generation technique for stress testing
session-based systems. IEEE Trans. Softw. Eng.,
32(11):868-882, Nov. 2006.

[4] N. Mi, G. Casale, L. Cherkasova, and E. Smirni. Burstiness
in multi-tier applications: Symptoms, causes, and new
models. In Proc. of Middleware, LNCS 5346, 265-286, 2008.

[6] N. Mi, Q. Zhang, A. Riska, E. Smirni, and E. Riedel.
Performance impacts of autocorrelated flows in multi-tiered
systems. Performance Evaluation, 64(9-12):1082-1101, 2007.

[6] M.F. Neuts. Structured Stochastic Matrices of M/G/1 Type
and Their Applications. Marcel Dekker, 1989.

