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ABSTRACT

There has been considerable interest in using control theory to
build web servers, database managers, and other systems. We
claim that the potential value of using control theory cannot
be realized in practice without a methodology that addresses
controller design, testing, and tuning. Based on our experience
with building a controller for the .NET thread pool, we develop
a methodology that: (a) designs for extensibility to integrate
diverse control techniques, (b) scales the test infrastructure to
enable running a large number of test cases, (c) constructs test
cases for which the ideal controller performance is known a pri-
ori so that the outcomes of test cases can be readily assessed,
and (d) tunes controller parameters to achieve good resultsfor
multiple performance metrics. We conclude by discussing how
our methodology can be extended, especially to designing con-
trollers for distributed systems.

1. INTRODUCTION

Over the last decade, many researchers have advocated the ben-
efits of using control theory to build systems. Examples include
controlling quality of service in web servers [10], regulating
administrative utilities in database servers [6], controlling uti-
lizations in real time systems [9], and optimizing TCP/IP [5].
Despite these advances, control theory is rarely used by soft-
ware practitioners. We claim that this is because the success-
ful application of control theory to systems requires addressing
many methodological considerations that are largely ignored in
existing research.

We demonstrate our thesis by discussing issues we encountered
in developing a controller for the .NET thread pool [7]. The
thread pool exposes an interface called
QueueUserWorkItem() through which programmers place
work items into a queue for asynchronous execution. The thread
pool assigns work items to threads. The thread pool controller
determines the number of threads or concurrency level that max-
imizes throughput by on-line estimation of the relationship be-
tween concurrency level and throughput. For example, Figure 1
displays the concurrency-throughput curve for a .NET applica-
tion. In this case, the thread pool controller seeks a concurrency
level that is approximately 18.
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Figure 1: Concurrency-throughput curve for a .NET applica-
tion. Throughput degrades if the concurrency level exceeds20
due to the overhead of context switching.

Although we readily identified a set of control techniques to
employ in managing the .NET thread pool, our progress was
thwarted by several methodology considerations in controller
design, testing, and tuning. Unfortunately, the current research
literature offers little help. The ControlWare framework [11]
describes middleware for building controllers, but it addresses
only a limited aspect of controller design, and it does not con-
sider testing and tuning. There are a few reports of applying
control theory to commercial products such as IBM’s DB2 for
throttling administrative utilities [6] and optimizing memory
pools [4] as well as Hewlett Packard’s Global Workload Man-
ager [1]. Beyond this, there have been a plethora of experi-
ments in which control theory is applied to software systems
in testbeds (e.g., see [2] and the references therein). Unfortu-
nately, these papers focus almost exclusively on control laws.
In summary, none of this research adequately addresses con-
troller design, testing, and tuning.

This paper describes a methodology for controller design, test-
ing, and tuning based on our experience with applying control
theory to the .NET thread pool. A central concern in controller
design is providing extensibility, especially to integrate diverse



control techniques. Our methodology addresses this by struc-
turing controllers as finite state machines. One concern in test-
ing is providing a test infrastructure that scales well withthe
number of test cases. Our methodology addresses this by us-
ing resource emulation. Also in testing, we must construct test
cases whose ideal outcomes are known a priori so that observed
outcomes can be assessed. Our methodology addresses this by
using a test case framework for which ideal test outcomes can
be computed analytically. Last, tuning controller parameters
requires selecting parameter settings that provide good results
for multiple performance metrics. Our methodology addresses
this by selecting tuning parameter settings that lie on the opti-
mal frontier in the space of performance metrics.

The remainder of this paper is organized as follows. Section
2 discusses controller design, Section 3 addresses testing, and
Section 4 considers tuning considerations. Our conclusions are
contained in Section 5.

2. DESIGN

The objective of the .NET thread pool controller is to find a
concurrency level that maximizes throughput, where through-
put is measured in completed work items per second. In addi-
tion, the controller should minimize the concurrency levelso
that memory demands are reduced, and minimize changes in
concurrency level to reduce context switching overheads. In
practice, there are trade-offs between these objectives.

Our starting point for the control design is the concurrency-
throughput curve, such as Figure 1. While the curve may change
over time, we assume that it has a unimodal shape. This as-
sumption suggests that hill climbing should be used to optimize
the concurrency level. However, many factors make hill climb-
ing non-trivial to implement for the thread pool controller.

• DR-1: The controller must consider the variability of
throughput observations.

• DR-2: The controller must adapt to changes in the
concurrency-throughput curve (e.g., due to changes in
workloads).

• DR-3: The controller needs to consider the transient ef-
fects of control actions on throughput due to delays in
starting new threads and terminating existing threads.

DR-1 can be addressed by Stochastic Gradient Approximation
(SGA), a technique that does hill climbing on unimodal curves
that have randomness [8]. We use the SGA variant based on
finite differences, which has the control law:

uk+1 = uk + gdk, (1)

wherek indexes changes in the concurrency level,uk is thek-
th setting for the concurrency level,g is a tuning constant called
the control gain, anddk is the discrete derivative at timek.

For DR-2, we use change point detection, a statistical technique
for detecting changes in the distributions of stochastic data [3].
The concurrency-throughput curve changes under several con-
ditions: (a) new workloads arrives; (b) the existing workloads
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Figure 2: State diagram for thread pool controller.

change their profiles (e.g. move from a CPU intensive phase
to an I/O intensive phase); and (c) there is competition with
threads in other processes that reduces the effective bandwidth
of resources. TransitionTb in Figure 2 detects these situations
by using change point detection [3]. Change point detectionis
an on-line statistical test that is widely used in manufacturing
to detect process changes. For example, change point detec-
tion is used in wafer fabrication to detect anomalous changes
in width widths. We use change point detection in two ways.
First, we prune older throughputs in the measurement history
if they differ greatly from later measurements since the older
measurements may be due to transitions between concurrency
levels. Second, we look for change points evident in recently
observed throughputs at the same concurrency level.

For DR-3, we use dead-time detection, a technique that deals
with delays in effecting changes in concurrency level. To elab-
orate, one source of throughput variability within a concur-
rency level arises if a controller-requested change in concur-
rency level is not immediately reflected in the number of active
threads. Such delays, which are a kind of controller dead-time,
are a consequence of the time required to create new threads or
to reduce the number of active threads. We manage dead-time
by including states 1a and 2a in Figure 2. The controller enters
an "‘InTransition"’ state when it changes the concurrency level,
and it leaves an “InTransition" state under either of two condi-
tions: (1) the observed number of threads equals the controller
specified concurrency level; or (2) the number of threads is less
than the controller specified concurrency level, and there is no
waiting work item.

There is considerable complexity in designing a controllerthat
integrates SGA, change-point detection, and dead-time detec-
tion. Further, we want it to be easy to extend the thread pool
controller to integrate additional control techniques. This led to
the following considerations:

Methodology challenge 1: Provide an extensible controller
design that integrates diverse control techniques.

Approach 1: Structure the controller as a finite state ma-
chine in which states encapsulate different control techniques.

Structuring the controller as a finite state machine allows us to
integrate diverse control techniques. Figure 2 displays such a
structure for our thread pool controller. SGA is implemented by
a combination of the logic in State 1, which computes through-
put at the initial concurrency level, and State 2, which imple-
ments Equation (1). Change-point detection is handled by the



Transition Description
Ta Completed initialization
Tb Change point while looking for a move
Tc Changed concurrency level
Td End of initialization transient
Te Changed concurrency level
Tf End of climbing transient

Figure 3: Description of state transitions in Figure 2.
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Figure 4: Throughput (circles) at control settings specified by
a cyclic ramp (line).

transitionTb. Dead-time detection is addressed by including
States 1a and 2a and their associated transitions.

The controller is implemented in C#, an object-oriented lan-
guage similar to JAVATM . An object-oriented design helps us
address certain implementation requirements. For example, we
want to experiment with multiple controller implementations,
many of which have features in common (e.g., logging). We
use inheritance so that features common to several controllers
are implemented in classes from which other controllers in-
herit. The controller code is structured into three parts: im-
plementation of the state machine in Figure 2, implementation
of the conditions for the transition in Figure 3, and implemen-
tation of the action part of transitions.

3. TESTING

The wide-spread and diverse use of the .NET thread pool man-
dates that there be extensive testing for both correctness and
performance. Some of the testing is done with performance
benchmarks such as those from the Transaction Processing Coun-
cil (e.g., TPC-W). However, to cover the diversity of .NET ap-
plications, we also use a set of synthetic applications. This
section focuses on the latter.

A synthetic work item is described in terms of its resource pro-
file, such as the CPU, memory, and web services it consumes.
CPU and memory are of particular interest since excessive uti-
lizations of these resources leads to thrashing, which is a spe-
cific area of concern for the thread pool controller. We use the
term workload to refer to a set of work items with the same
resource profile.

In our controller assessments, we vary the workloads dynam-
ically to see how well the controller adjusts. There are two
requirements here:

• TR-1: The test infrastructure must scale well since a
large number of tests must be run to provide adequate
coverage of the diverse operating environments of the
thread pool.

• TR-2: There must be a priori knowledge of the ideal con-
troller performance in order to assess observed outcomes
of test cases.

We begin with TR-1. In our initial design, tests executed on
physical resources consuming real CPU, memory, and other re-
sources. This resulted in long execution times and highly vari-
able test results, both of which limited our ability to explore a
large number of test cases.

Methodology challenge 2: Provide a test infrastructure that
can efficiently execute a large number of test cases.

Approach 2: Use resource emulation.

By resource emulation, we mean that threads sleep for the time
that they would have consumed the resource. This works well
for active resources such as CPU, and it can be generalized to
incorporate thrashing for memory by expanding nominal ex-
ecution times based on memory over-commitment. In terms
of controller assessments, it does not matter that resourcecon-
sumption is emulated; the controller’s logic is unchanged.How-
ever, resource emulation greatly reduces the load on test ma-
chines.

Using resource emulation allows us to increase the rate of test
case execution by a factor of twenty. It also provides (although
does not require) the ability to produce low-variance test re-
sults, a capability that is often needed to understand the effects
of a change in controller design or parameter settings. The abil-
ity of our test infrastructure to produce low variance results is
evidenced in Figure 4. This figure displays the results of an
open loop test in which the concurrency level changes from 5
to 50 over 7,500 seconds for a dynamic workload. Because of
the low measurement variability, we can clearly see the effects
of thrashing, such as the drop in throughput around time 2,000
as concurrency level is increased beyond 27. The increased ef-
ficiency and reduced variability of the test infrastructuremeant
that we could run a large number of test cases to obtain better
coverage of controller operating environments.

TR-2 concerns our ability to assess the outcome of test cases.
For the thread pool controller, this means knowing the ideal
concurrency levelu∗, which is the minimum concurrency level
at which the maximum throughput is achieved. Clearly,u∗ de-
pends on the test case.

Methodology challenge 3: Construct test cases for which
the ideal controller performance is known a priori to pro-
vide a way to assess observed controller performance.

Approach 3: Use a test case framework for which ideal



controller performance can be computed analytically.

Our approach is to provide a broadly parameterizable frame-
work for test cases that requires the controller to resolve com-
plex performance trade-offs (although we make no claim that
such test cases are representative). We consider test casesfor
which a work item first waits in a FIFO queue to execute on a
serially-accessed resource (which may have multiple instances).
Then, the work item executes on a resource that is accessed in
parallel without contention. Work items acquire a fractionof
system memory before using the serial resource, and if memory
is over-committed, then the nominal execution time of the serial
resource is expanded by the memory over-commitment. Com-
pleted work items are immediately inserted back in the FIFO
queue. An example of the serial resource is CPU, and exam-
ples of parallel resources are lightly loaded web services and
disks.

Let Mi be the number of profilei work items that enter the
thread pool, and soM =

∑

i
Mi is the total number of work

items. Similarly, we useui to denote the concurrency level
for the i-th workload, and so the total concurrency levelu =
∑

i
ui. Let qi denote the fraction of memory required by a

work item in workloadi. There areN instances of the serial
resource. LetXS,i be the nominal execution time on the se-
rial resource for a work item from workloadi. If there areI
workloads, then the expansion factore is Max{1, q1u1+· · ·+
qIuI} (sinceqiui is the fraction of memory requested by work-
load i work items in the active set). Thus, the actual execution
time of workloadi on the serial resource iseXS,i. Work items
execute in parallel forXP,i seconds.

It is easy to find a concurrency levelu∗ that maximizes through-
put for a single workload. There are two cases. IfMq ≤ 1,
then e = 1 and sou∗

= M . Now, consideruq > 1 and
so e > 1. Clearly, we wantu large enough so that we ob-
tain the benefits of concurrent execution of serial and paral-
lel resources, but we do not wantu so large that work items
wait for the serial resource since this increases executiontimes
by a factor ofe without an increase in throughput. So, we
want the average flow out from the serial resources to equal
the flow out from the parallel resources. This is achieved when

N
u∗qXS

=
u∗

−N
XP

≈ u∗

XP
(if N << u∗). Solving, we have:

u∗ ≈

√

rN

q
, (2)

wherer = XP /XS . This is easily extended to multiple work-
loads by havingq =

∑

i
Mi

M
qi, XS =

∑ Mi

M
XS,i, andXP =

∑ Mi

M
XP,i. For example, in Figure 4, there are two work-

loads during Region III (time 3,000 to 4,500) withM1 = 20,
XS,1 = 0, XP,1 = 1000ms, M2 = 40, q2 = 0.04, XS,2 =

50ms, XP,2 = 950ms. Equation (2) produces the estimate
u∗ ≈ 33, which corresponds closely to concurrency level at
which the maximum throughput occurs in Figure 4.

These analytic models allow us to assess choices for controller
design and parameter settings by comparing observed controller
performance of a test case with the controller’s ideal perfor-
mance for the test case.

4. TUNING

Our thread pool controller has approximately ten tuning param-
eters, many of which have significant impact on performance.
Examples of tuning parameters are: (a) the control gain pa-
rameterg in Equation (1); (b) the significance level (p value)
used in statistical tests to detect changes in throughputs;(c) the
minimum number of observations that must be collected at a
concurrency level before a statistical test is conducted; and (d)
the size of the “random move" concurrency level made when
exiting State 1 (and for exploratory moves). These tuning pa-
rameters interact in complex ways. For example, both the con-
trol gain and the significance level impact the trade-off between
moving quickly in response to a change in throughputs and be-
ing robust to noise in throughput observations.

The goal of tuning is to find a few settings (values) of tuning
parameters that result in good controller performance for many
workloads. Clearly, tuning requires running a large numberof
tests cases, which in turn demands a scalable test infrastructure
as addressed in Section 3. There is a second challenge as well:

Methodology challenge 4: Select tuning parameter settings
that optimize multiple performance metrics.

Approach 4: Only consider tuning parameter settings on
the optimal frontier of the space of performance metrics.

We have three performance metrics: throughput, number of
threads, and standard deviation of number of threads. Using
the test cases described in Section 3, we can normalize the
throughput measured in a test case by dividing by the optimal
throughput achievable for the test case (obtained from the ana-
lytic model developed in Section 3). And, we can compute the
excess number of threads, which is the number of threads used
in the test case that exceedu∗. We define theoptimal fron-
tier of tuning parameter settings in the three dimensional space
of performance metrics to be the parameter settings for which
no other setting has better values of all performance metrics.
Figure 5 visualizes the results of performance tests for approx-
imately 2,000 tuning parameter settings. Each circle indicates
the values of performance metrics for a single setting of tun-
ing parameters averaged over 64 resource profiles. The optimal
frontier is indicated by the blue plus signs. Note that A is a
setting of tuning parameters that does not lie on the optimal
frontier. Settings B-E are on the optimal frontier, and represent
different trade-offs between the performance metrics. Forex-
ample, E has very few excess threads and low throughput, while
C has high throughput and a large number of excess threads.

5. CONCLUSIONS

Control theory has the potential to provide substantial benefits
in system design. However, using control theory in the real
world requires a methodology for controller design, testing, and
tuning.

Our experience with building a controller for the .NET thread
pool motivated the development of a methodology for applying
control theory to a broad range of systems. A central concern
in controller design is providing extensibility, especially to in-
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Figure 5: Performance of settings of tuning parameters for
three performance metrics. The blue plus signs indicate the
optimal frontier.

tegrate diverse control techniques. Our methodology addresses
this by designing controllers as finite state machines. One con-
cern in testing is providing a test infrastructure that scales well
with the number of test cases. Our methodology addresses this
by using resource emulation. Also in testing, we must con-
struct test cases whose ideal outcomes are known a priori so
that observed outcomes can be assessed. Our methodology ad-
dresses this by using a test case framework for which ideal test
outcomes can be computed analytically. Last, tuning controller
parameters requires selecting parameter settings that provide
good results for multiple performance metrics. Our methodol-
ogy addresses this by selecting tuning parameter settings that
lie on the optimal frontier in the space of performance metrics.

Although our methodology was developed to address challenges
in designing a thread pool on a single machine, we have found
it to be valuable in designing controllers for large scale dis-
tributed systems. Consider the control challenges in Internet
Data Centers such as those operated by Google, Microsoft, and
Yahoo!. Typically, such systems consist of thousands of ma-
chines on which many jobs execute, where each job consists
of tens to tens of thousands of tasks. One control problem is
to assign tasks to machines in a way that maximizes through-
put, minimizes response times, and abides by data center power
constraints. This can be viewed as a multi-dimensional bin-
packing problem in which the dimensions are task resource
requirements (e.g., CPU, memory, network bandwidth), and
the machines are multi-dimensional bins. Some parts of our
methodology apply directly. For example, having a scalable
test infrastructure is critical to evaluating the performance of
the task assignment controller, something that we have addressed
by using a variety of performance evaluation techniques. Asde-
scribed in Section 3, we use resource emulation to constructan
efficient test infrastructure by employing models of individual
machines instead of detailed simulations. The models are cal-

ibrated by measurements and/or detailed simulations. Also, as
in the .NET controller, controllers for distributed systems have
a number of tuning constants that must be selected. The param-
eter tuning techniques in Section 4 are applicable here, such
as finding the optimal frontier in a multi-dimensional space
of performance metrics (i.e., throughput, response time, power
consumption). Other parts of are methodology have been ex-
tended. For example, a state representation of a distributed sys-
tem scales poorly. We can scale better by constructing equiva-
lence classes of machines and having the state space expressed
in terms of these equivalence classes.
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