Applying Control Theory in the Real World:
Experience With Building a Controller for the .NET Thread Po ol

Joseph L. Hellerstein Vance Morrison Eric Eilebrecht
Google, Inc. Microsoft Developer Division Microsoft Developer Division
650 N. 34 Street One Microsoft Way One Microsoft Way
Seattle, WA USA Redmond, WA USA Redmond, WA USA
jlh@google.com vancem@microsoft.com ericeil@microsoft.com
ABSTRACT 160 o
< ofrs”

There has been considerable interest in using controlyheor 1407 *f; L %*fi .
build web servers, database managers, and other systems. We 15l ’ ek .
claim that the potential value of using control theory canno o7 i %hg
be realized in practice without a methodology that addsesse "5' 100 O) *
controller design, testing, and tuning. Based on our egpes o *
with building a controller for the .NET thread pool, we deye! £ 80 X
a methodology that: (a) designs for extensibility to instgr g) 60~ . *
diverse control techniques, (b) scales the test infrastraco @) po
enable running a large number of test cases, (c) constesttst & 40"
cases for which the ideal controller performance is knowri-ap
ori so that the outcomes of test cases can be readily assessed 207
and (d) tunes controller parameters to achieve good refsults ‘ ‘ ‘ ‘
multiple performance metrics. We conclude by discussing ho 0 10 20 30 40 50
our methodology can be extended, especially to designing co Concurrency Leve|

trollers for distributed systems.

Figure 1: Concurrency-throughput curve for a .NET applica-
tion. Throughput degrades if the concurrency level exc@éds

1. INTRODUCTION due to the overhead of context switching.

Over the last decade, many researchers have advocatedithe be
efits of using control theory to build systems. Examplesidel Although we readily identified a set of control techniques to
controlling quality of service in web servers [10], regidlgt employ in managing the .NET thread pool, our progress was
administrative utilities in database servers [6], cotitngl uti- thwarted by several methodology considerations in coetrol
lizations in real time systems [9], and optimizing TCP/IR.[5 design, testing, and tuning. Unfortunately, the curreséagch
Despite these advances, control theory is rarely used hy sofliterature offers little help. The ControlWare frameworkl]
ware practitioners. We claim that this is because the sseces describes middleware for building controllers, but it aades
ful application of control theory to systems requires addiy ~ only a limited aspect of controller design, and it does nat-co
many methodological considerations that are largely igddn sider testing and tuning. There are a few reports of applying
existing research. control theory to commercial products such as IBM’s DB2 for
throttling administrative utilities [6] and optimizing nrery
We demonstrate our thesis by discussing issues we encednter pools [4] as well as Hewlett Packard’s Global Workload Man-
in developing a controller for the .NET thread pool [7]. The ager [1]. Beyond this, there have been a plethora of experi-
thread pool exposes an interface called ments in which control theory is applied to software systems
QueueUser Wor kI t en() through which programmers place in testbeds (e.g., see [2] and the references therein). rtunfo
work items into a queue for asynchronous execution. Thathre nately, these papers focus almost exclusively on contvas.la
pool assigns work items to threads. The thread pool coetroll In summary, none of this research adequately addresses con-
determines the number of threads or concurrency level that m troller design, testing, and tuning.
imizes throughput by on-line estimation of the relatiopshe-
tween concurrency level and throughput. For example, Eiur This paper describes a methodology for controller desist; t
displays the concurrency-throughput curve for a .NET &apli ing, and tuning based on our experience with applying cbntro
tion. In this case, the thread pool controller seeks acoanay theory to the .NET thread pool. A central concern in congroll
level that is approximately 18. design is providing extensibility, especially to integraiverse

control techniques. Our methodology addresses this bg-stru | State 1- Initializing |
turing controllers as finite state machines. One conceresn t A \

ing is providing a test infrastructure that scales well vilte ch Td Tav Tb

number of test cases. Our methodology addresses this by us- |State 1a- mTransmonl < State 2 - Climbing |
ing resource emulation. Also in testing, we must constrest t I

cases whose ideal outcomes are known a priori so that olsserve Te Tt
outcomes can be assessed. Our methodology addresses this by Y

using a test case framework for which ideal test outcomes can |5tate 2a- '”Trans“ionl
be computed analytically. Last, tuning controller parasret

requires selecting parameter settings that provide gosutse Figure 2: State diagram for thread pool controller.

for multiple performance metrics. Our methodology addzess
this by selecting tuning parameter settings that lie on fite o
mal frontier in the space of performance metrics.

change their profiles (e.g. move from a CPU intensive phase
The remainder of this paper is organized as follows. Sectiorto an 1/O intensive phase); and (c) there is competition with
2 discusses controller design, Section 3 addresses teatidg threads in other processes that reduces the effective hdtdw
Section 4 considers tuning considerations. Our conclssiwa of resources. Transitiofi, in Figure 2 detects these situations
contained in Section 5. by using change point detection [3]. Change point detedtion
an on-line statistical test that is widely used in manufaotu
to detect process changes. For example, change point detec-
tion is used in wafer fabrication to detect anomalous change
in width widths. We use change point detection in two ways.
First, we prune older throughputs in the measurement lyistor
if they differ greatly from later measurements since theeold
measurements may be due to transitions between concurrency
iIevels. Second, we look for change points evident in regentl
Boserved throughputs at the same concurrency level.

2. DESIGN

The objective of the .NET thread pool controller is to find a
concurrency level that maximizes throughput, where thineug
put is measured in completed work items per second. In addi
tion, the controller should minimize the concurrency lesel
that memory demands are reduced, and minimize changes
concurrency level to reduce context switching overheads. |

practice, there are trade-offs between these objectives. For DR-3, we use dead-time detection, a technique that deals

. . L with delays in effecting changes in concurrency level. Ebel
Our starting point for the control design is the concurrency orate, one source of throughput variability within a concur

throughput curve, suchas Figure 1. Wh[lethe curve may ce’f‘angrency level arises if a controller-requested change in wenc
over time, we assume that it has a unimodal shape. This ag

. S L ency level is not immediately reflected in the number ofwacti
sumption suggests that hill climbing should be used to dptim threads. Such delays, which are a kind of controller deaeti
the concurrency level. However, many factors make hill bihm ' !

h L . are a consequence of the time required to create new threads o
ing non-trivial to implement for the thread pool controller to reduce the number of active threads. We manage dead-time
by including states 1a and 2a in Figure 2. The controllerrente
e DR-1: The controller must consider the variability of an™InTransition" state when it changes the concurrermel,
throughput observations. and it leaves an “InTransition" state under either of twodten
] tions: (1) the observed number of threads equals the céertrol
e DR-2: The controller must adapt to changes in the gpecified concurrency level; or (2) the number of threadsss |
concurrency-throughput curve (e.g., due to changes inpan the controller specified concurrency level, and therei
workloads). waiting work item.

e DR-3: The controller needs to consider the transient ef-
fects of control actions on throughput due to delays in
starting new threads and terminating existing threads.

There is considerable complexity in designing a contrdhet

integrates SGA, change-point detection, and dead-timecdet
tion. Further, we want it to be easy to extend the thread pool
controller to integrate additional control techniquesisTiad to

DR-1 can be addressed by Stochastic Gradient Approximatiomhe following considerations:

(SGA), a technique that does hill climbing on unimodal csrve

that have randomness [8]. We use the SGA variant based oMethodology challenge 1: Provide an extensible controller

finite differences, which has the control law: design that integrates diverse control techniques.
1 = d 1 _

Ukt1 = Uk + gk, @ Approach 1: Structure the controller as a finite state ma-
wherek indexes changes in the concurrency lewvgljs the k- chine in which states encapsulate different control techmjues.
th setting for the concurrency leveljs a tuning constant called
the control gain, and; is the discrete derivative at tirmie Structuring the controller as a finite state machine allog/sou

integrate diverse control techniques. Figure 2 displags su
For DR-2, we use change point detection, a statistical igalen structure for our thread pool controller. SGA is implemelitg
for detecting changes in the distributions of stochastia {#]. a combination of the logic in State 1, which computes threugh
The concurrency-throughput curve changes under sevamal co put at the initial concurrency level, and State 2, which ieapl
ditions: (a) new workloads arrives; (b) the existing wodds ments Equation (1). Change-point detection is handled &y th

Transition | Description In our controller assessments, we vary the workloads dynam-

Ta Completed initialization ically to see how well the controller adjusts. There are two

Ty Change point while looking for a move requirements here:

T. Changed concurrency level

Ty End of initialization transient

T, Changed concurrency level e TR-1: The test infrastructure must scale well since a

Ty End of climbing transient large number of tests must be run to provide adequate
coverage of the diverse operating environments of the
thread pool.

Figure 3: Description of state transitions in Figure 2. L .
g P 9 e TR-2: There must be a priori knowledge of the ideal con-

troller performance in order to assess observed outcomes

o [of test cases.
m407 “\ w“‘ :“ ;‘" ‘J‘ “y w\L 3
§ N A We begin with TR-1. In our initial design, tests executed on
300 Do Pl g “ R “L 1 physical resources consuming real CPU, memory, and other re
s | Yok o } f‘g L i | sources. This resulted in long execution times and highti va
= ‘L‘ M ;* t‘x M : able test results, both of which limited our ability to exg@a
ST S B S ¥ large number of test cases.
= ! U * % F L
Sl 3 H h—ir . .
i o E é ¥ Methodology challenge 2: Provide a test infrastructure tha
of LA S : : can efficiently execute a large number of test cases.
0 2000 Ti 40(()0) 6000 8000
Ime (sec,

Approach 2: Use resource emulation.
Figure 4: Throughput (circles) at control settings specified by) .
a cyclic ramp (line). By resource emulation, we mean that threads sIeep for thee tim
that they would have consumed the resource. This works well
for active resources such as CPU, and it can be generalized to
incorporate thrashing for memory by expanding nominal ex-
ecution times based on memory over-commitment. In terms
of controller assessments, it does not matter that resamrce
sumption is emulated; the controller’s logic is unchandéow-
ever, resource emulation greatly reduces the load on test ma
chines.

transitionT,. Dead-time detection is addressed by including
States 1a and 2a and their associated transitions.

The controller is implemented in C#, an object-oriented lan
guage similar to JAVA™ . An object-oriented design helps us
address certain implementation requirements. For examgle
want to experiment with multiple controller implementaiso
many of which have features in common (e.g., logging). We
use inheritance so that features common to several casoll
are implemented in classes from which other controllers in-
herit. The controller code is structured into three parts: i
plementation of the state machine in Figure 2, implemeotati
of the conditions for the transition in Figure 3, and impleme
tation of the action part of transitions.

Using resource emulation allows us to increase the ratesof te
case execution by a factor of twenty. It also provides (aitfio
does not require) the ability to produce low-variance test r
sults, a capability that is often needed to understand feetsf
of a change in controller design or parameter settings. Bite a
ity of our test infrastructure to produce low variance resid
evidenced in Figure 4. This figure displays the results of an
open loop test in which the concurrency level changes from 5
to 50 over 7,500 seconds for a dynamic workload. Because of
the low measurement variability, we can clearly see thectffe
3. TESTING of thrashing, such as the drop in throughput around time®,00
as concurrency level is increased beyond 27. The incredsed e
The wide-spread and diverse use of the .NET thread pool marficiency and reduced variability of the test infrastructoreant
dates that there be extensive testing for both correctnass a that we could run a large number of test cases to obtain better
performance. Some of the testing is done with performancecoverage of controller operating environments.
benchmarks such as those from the Transaction Processimg Co
cil (e.g., TPC-W). However, to cover the diversity of NET-ap TR-2 concerns our ability to assess the outcome of test cases
plications, we also use a set of synthetic applications.s Thi For the thread pool controller, this means knowing the ideal
section focuses on the latter. concurrency level,*, which is the minimum concurrency level
at which the maximum throughput is achieved. Clearlyde-
A synthetic work item is described in terms of its resoura@ pr pends on the test case.
file, such as the CPU, memory, and web services it consumes.
CPU and memory are of particular interest since excessive ut Methodology challenge 3: Construct test cases for which
lizations of these resources leads to thrashing, which ea s the ideal controller performance is known a priori to pro-
cific area of concern for the thread pool controller. We uge th vide a way to assess observed controller performance.
term workload to refer to a set of work items with the same
resource profile. Approach 3: Use a test case framework for which ideal

controller performance can be computed analytically. 4. TUNING

Our approach is to provide a broadly parameterizable frame©Our thread pool controller has approximately ten tuningupar
work for test cases that requires the controller to resobra-c eters, many of which have significant impact on performance.
plex performance trade-offs (although we make no claim thatExamples of tuning parameters are: (a) the control gain pa-
such test cases are representative). We consider testfoases rameterg in Equation (1); (b) the significance level yalue)
which a work item first waits in a FIFO queue to execute on aused in statistical tests to detect changes in throughfm)tthe
serially-accessed resource (which may have multiplemcsts). minimum number of observations that must be collected at a
Then, the work item executes on a resource that is accessed @oncurrency level before a statistical test is conductad;(d)
parallel without contention. Work items acquire a fractifn the size of the “random move" concurrency level made when
system memory before using the serial resource, and if memorexiting State 1 (and for exploratory moves). These tuning pa
is over-committed, then the nominal execution time of thiiaée rameters interact in complex ways. For example, both the con
resource is expanded by the memory over-commitment. Comtrol gain and the significance level impact the trade-offussn
pleted work items are immediately inserted back in the FIFOmoving quickly in response to a change in throughputs and be-
gueue. An example of the serial resource is CPU, and examing robust to noise in throughput observations.
ples of parallel resources are lightly loaded web services a
disks. The goal of tuning is to find a few settings (values) of tuning
parameters that result in good controller performance famyn
Let M; be the number of profilé work items that enter the workloads. Clearly, tuning requires running a large nundfer
thread pool, and sdf =), M; is the total number of work tests cases, which in turn demands a scalable test infcasteu
items. Similarly, we use:; to denote the concurrency level as addressed in Section 3. There is a second challenge as well
for the i-th workload, and so the total concurrency leuek=
>, ui. Letg; denote the fraction of memory required by a Methodology challenge 4: Select tuning parameter settings
work item in workload:. There areN instances of the serial that optimize multiple performance metrics.
resource. LetXs; be the nominal execution time on the se-
rial resource for a work item from workload If there arel Approach 4: Only consider tuning parameter settings on
workloads, then the expansion factas Max{1, qu1+---+ the optimal frontier of the space of performance metrics.
qrur } (sinceg;u; is the fraction of memory requested by work-
loadi work items in the active set). Thus, the actual executionWe have three performance metrics: throughput, number of
time of workload: on the serial resource isXs ;. Work items threads, and standard deviation of number of threads. Using
execute in parallel foX p ; seconds. the test cases described in Section 3, we can normalize the
throughput measured in a test case by dividing by the optimal
Itis easy to find a concurrency level that maximizes through- throughput achievable for the test case (obtained fromrhe a
put for a single workload. There are two casesMf; < 1, lytic model developed in Section 3). And, we can compute the
thene = 1 and sou™ = M. Now, considerug > 1 and excess number of threads, which is the number of threads used
soe > 1. Clearly, we wantu large enough so that we ob- in the test case that exceed. We define theoptimal fron-
tain the benefits of concurrent execution of serial and paraltier of tuning parameter settings in the three dimensional space
lel resources, but we do not wantso large that work items of performance metrics to be the parameter settings forhwhic
wait for the serial resource since this increases exectititas no other setting has better values of all performance ngetric
by a factor ofe without an increase in throughput. So, we Figure 5 visualizes the results of performance tests forapp
want the average flow out from the serial resources to equaimately 2,000 tuning parameter settings. Each circle aigie
the flow out from the parallel resources. This is achievedrwhe the values of performance metrics for a single setting of tun
% = ";;N ~ ;—P (if N << u*). Solving, we have: ing parameters averaged over 64 resource profiles. Thealptim
frontier is indicated by the blue plus signs. Note that A is a
setting of tuning parameters that does not lie on the optimal
X rN frontier. Settings B-E are on the optimal frontier, and esgnt
u o~ q © different trade-offs between the performance metrics. exoer
ample, E has very few excess threads and low throughpute whil

C has high throughput and a large number of excess threads.
wherer = Xp/Xg. This is easily extended to multiple work-
loads by having; = 3, g, Xs = 3" 2 X, andXp =
S 2 Xp;. For example, in Figure 4, there are two work- 5. CONCLUSIONS
loads during Region Il (time 3,000 to 4,500) wiftf; = 20,
Xs1 =0, Xp1 = 1000ms, Ma = 40, g2 = 0.04, X522 = Control theory has the potential to provide substantiakfien
50ms, Xp2 = 950ms. Equation (2) produces the estimate in system design. However, using control theory in the real
u* & 33, which corresponds closely to concurrency level at world requires a methodology for controller design, tesstand
which the maximum throughput occurs in Figure 4. tuning.

These analytic models allow us to assess choices for ctartrol Our experience with building a controller for the .NET thdea
design and parameter settings by comparing observed dentro pool motivated the development of a methodology for aplyin
performance of a test case with the controller’s ideal perfo control theory to a broad range of systems. A central concern
mance for the test case. in controller design is providing extensibility, espebyjab in-

Excess Threads

x 1072 ibrated by measurements and/or detailed simulations., Also

20 7
[e]
18} 1 .
‘\ i
16}] 6 R
-
14+ o 1
5, 4
12+ Q)O 1 K
Oo 8
10t Oon 1 o
s g4
8t 1]
(9]
6 1 3t
6.
4, 4
i | 2r 1
O, 4
L 1 L
0 0.5 1 0 0.5 1

Normalized Throughput Normalized Throughput

Figure 5: Performance of settings of tuning parameters for
three performance metrics. The blue plus signs indicate the
optimal frontier.

[4

tegrate diverse control techniques. Our methodology addse
this by designing controllers as finite state machines. @ne c
cern in testing is providing a test infrastructure that ssatell

with the number of test cases. Our methodology addresses thi [5]

by using resource emulation. Also in testing, we must con-
struct test cases whose ideal outcomes are known a priori so
that observed outcomes can be assessed. Our methodology ad-

dresses this by using a test case framework for which idetl te [g]

outcomes can be computed analytically. Last, tuning ctiatro
parameters requires selecting parameter settings thaidpro
good results for multiple performance metrics. Our metthodo

ogy addresses this by selecting tuning parameter settirags t [7]

lie on the optimal frontier in the space of performance nostri

8

in designing a thread pool on a single machine, we have found [9] X. Wang, D. Jia, C. Lu, and X. Koutsoukos. Deucon:

Although our methodology was developed to address chakeng

it to be valuable in designing controllers for large scals- di
tributed systems. Consider the control challenges in heter
Data Centers such as those operated by Google, Microsdft, an
Yahoo!. Typically, such systems consist of thousands of ma-

chines on which many jobs execute, where each job consistglo]

of tens to tens of thousands of tasks. One control problem is
to assign tasks to machines in a way that maximizes through-
put, minimizes response times, and abides by data centarpow
constraints. This can be viewed as a multi-dimensional bin-
packing problem in which the dimensions are task resource
requirements (e.g., CPU, memory, network bandwidth), and
the machines are multi-dimensional bins. Some parts of our
methodology apply directly. For example, having a scalable
test infrastructure is critical to evaluating the perfonoa of

the task assignment controller, something that we havesaddd

by using a variety of performance evaluation techniquesdeAs
scribed in Section 3, we use resource emulation to consdruct
efficient test infrastructure by employing models of indival
machines instead of detailed simulations. The models dre ca

3

(11]

in the .NET controller, controllers for distributed systeimave
a number of tuning constants that must be selected. The param
eter tuning techniques in Section 4 are applicable heréh suc
as finding the optimal frontier in a multi-dimensional space
of performance metrics (i.e., throughput, response tiraagp
consumption). Other parts of are methodology have been ex-
tended. For example, a state representation of a distdisyt®
tem scales poorly. We can scale better by constructing agquiv
| lence classes of machines and having the state space egress
in terms of these equivalence classes.

References

[1] T. Abdelzaher, Y. Diao, J. L. Hellerstein, C. Yu, and

X. Zhu. Introduction to control theory and its application
to computing systems. In Z. Liu and C. Xia, editors,
Performance Modeling and Engineeringages 185-216.
Springer-Verlag, 2008.

[2] T. F. Abdelzaher, J. A. Stankovic, C. Lu, R. Zhang, and

Y. Lu. Feedback performance control in software
serviceslEEE Control Systems Magazin3(3):74-90,
2003.

M. Basseville and I. NikiforovDetection of Abrupt
Changes: Theory and ApplicatiarBrentice Hall, 1993.
Y. Diao, J. L. Hellerstein, A. Storm, M. Surendra,

S. Lightstone, S. Parekh, and C. Garcia-Arellano. Using
MIMO linear control for load balancing in computing
systems. IrProceedings of the American Control
Conferencepages 2045-2050, June 2004.

C. V. Hollot, V. Misra, D. Towsley, and W. B. Gong. A
control theoretic analysis of RED. Proceedings of

IEEE INFOCOM pages 1510-1519, Anchorage, Alaska,
Apr. 2001.

S. Parekh, K. Rose, Y. Diao, V. Chang, J. L. Hellerstein,
S. Lightstone, and M. Huras. Throttling utilities in the
ibm db2 universal database serverPimceedings of the
American Control Conferengdune 2004.

S. PratschneCommon Language Runtimdicrosoft
Press, 1st edition, 2005.

J. C. Spallintroduction to Stochastic Search and
Optimization Wiley-Interscience, 1st edition, 2003.

Decentralized end-to-end utilization control for
distributed real-time systemdEEE Transactions on
Parallel and Distributed System$8(7):996—1009, 2007.
C.-Z. Xu and B. Liu. Model predictive feedback control
for gos assurance in webservdiSEE Computer
41(3):66—72, 2008.

R. Zhang, C. Lu, T. F. Abdelzaher, and J. A. Stankovic.
Controlware: A middleware architecture for feedback
control of software performance. Internation
Conference on Distributed Computing Systepages
301-310, 2002.

