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ABSTRACT

Virtualization has been effective in providing performance isolation
and proportional allocation of resources, such as CPU and memory
between VMs by using automated distributed resource schedulers
and VM migration. Storage VMotion allows users to migrate vir-
tual hard disks from one data store to another without stopping the
virtual machine. There is a dire need for an automated tool to man-
age storage resources more effectively by doing virtual disk place-
ment and load balancing of workloads across multiple data stores.
This problem! is quite challenging because it requires modeling
both VM workloads and characterizing underlying devices. Fur-
thermore, device characteristics such as number of disks backing a
LUN, disk types etc. are hidden from the hosts by the virtualization
layer at the array.

In this paper, we propose a storage resource scheduler (SRS) to
manage virtual disk placement and automatic load balancing using
Storage VMotion. SRS has three main components: 1) Model a
workload using workload specific characteristics such as IO sizes,
read-write ratio, number of outstanding IOs etc. 2) Model stor-
age devices by transparently monitoring device dependent statistics
such as IO latencies and 3) Suggest VM disk migrations to improve
overall performance and do load balancing across devices. Our ini-
tial results lead us to believe that we can effectively model work-
loads and devices to improve overall storage resource utilization in
practice.

1. INTRODUCTION

Live migration of virtual machines has been used extensively in or-
der to manage CPU and memory, do load balancing, and improve
overall utilization of host resources. Tools like VMware’s Dis-
tributed Resource Scheduler (DRS) perform automated placement
of virtual machines (VMs) on a cluster of hosts in an efficient and
effective manner [19]. However, managing 1O resources to do bet-
ter placement and load balancing has been an open problem so far.
Storage systems are typically provisioned based on capacity and
reliability needs. Diverse IO behavior from various workloads and
hot-spotting can cause significant imbalance across devices over
time. Thus there is a dire need for a storage resource scheduler to
automate the task of managing storage devices based on workload
characteristics, application requirements and user-set policies such
as reliability, availability etc.

In spite of a lot of research towards storage configuration, allo-
cation and automatic data placement [4, 5, 7-9], most storage ad-

! Although we are using virtualized environments as our primary
use case, the problem and ideas proposed in the paper are quite
general and applicable to other scenarios as well.
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ministrators in IT organizations rely on rules of thumb and ad hoc
techniques, both for configuring a storage array and laying out data
on different volumes. For example, one of the common ways to
place two top-tier workloads is to create separate RAID groups
on disjoint sets of disks. Over-provisioning is another technique
commonly used to mitigate real or perceived performance issues.
These techniques, although helpful in some cases, cannot be gener-
alized for all. Since over-provisioning and hard-partitioning can be
very expensive and inefficient, their application should be guided
by workload characterization, device modeling and analysis. This
problem is harder than doing CPU and memory load balancing be-
cause storage is a stateful resource and IO performance strongly
depends on workload and device characteristics. We believe that
existing solutions for automated IO placement and storage config-
uration have not been widely adopted for two main reasons: (1)
lack of simple workload and device models that can be easily ob-
tained in a live system (2) lack of a primitive to do efficient and
interruption-free migration without human intervention. In virtual-
ized environments, Storage VMotion technology allows users to
migrate VM virtual disks from one storage device (data store) to
another without interrupting the VM or any applications running
inside it [20]. The usage so far has been manual, but Storage VMo-
tion can act as the main primitive for live migration of workloads
with zero down-time.
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Figure 1: Data migration using Storage VMotion

Figure 1 shows a setup with one host having access to multiple data
stores, which is quite common for virtualized data centers. The
storage array is carved up into groups of disks with some RAID
level configuration, also called as RAID-groups. Each such RAID-
group is further divided into logical units of storage (LUNs) which
are exported to hosts as storage devices. The goal of storage re-
source management is to do workload-aware placement and migra-
tions of virtual disks on LUNs in order to improve 10 performance
as well as utilization of storage devices.



Towards this goal, we propose Storage Resource Scheduler (SRS),
which has three main components. We first model the workloads
based on some of the key application-level characteristics that can
be easily collected in a live system. Then we model the under-
lying storage devices based on the device specific measurements,
which again can be done at each host. Finally we design an analy-
sis engine that uses data from first two steps to recommend storage
vmotions in order to mitigate hot-spotting.

For characterization, we partition the measurements into two sets.
First are the properties that are inherent to a workload and inde-
pendent of the underlying device such as seek-distance profile, IO
size, read-write ratio and number of outstanding 10s. Second are
device dependent measurements such as IOPS and IO latency. We
use these sets to model workloads and devices respectively. We
capture the measurements about IO patterns of workloads inside
the hypervisor. This is done in a lightweight manner, transparent to
the VMs. Device-level measurements are also obtained at each host
and sometimes aggregated across hosts if the LUN is shared using
a clustered file system. Based on these measurements, we assign a
single load metric . to each workload and a single performance
metric & to each LUN. Finally, the analyzer tries to assign the load
in proportion to the performance of each storage device.

In the rest of the paper, we first present details of our workload
characterization and modeling techniques in Section 2. Section 3
presents the modeling techniques to compute the performance met-
ric of each device followed by an outline of the load balancing en-
gine in Section 4. Section 5 presents the results of our preliminary
evaluation. Section 6 provides a survey of relevant prior work and
finally we conclude with some directions for future work and open
problems in Section 7.

2.  WORKLOAD CHARACTERIZATION

Any attempt at intelligent IO-aware layout policies must start with
storage workload characterization as an essential first step. For
each workload we track the following parameters: seek distance,
10 sizes, read-write ratio and average number of outstanding 10s.
In VMware ESX Server hypervisor, these parameters can be easily
obtained for each VM and each virtual disk using a utility called
vscsiStats [3]. The utility is online, very light-weight and trans-
parent to the VMs running on top of the hypervisor. It generates
histograms as well as averages for the workload parameters men-
tioned above. All of the data points are maintained for both reads
and writes to clearly show any anomaly in the application or device
behavior towards different request types.

We believe that the four measured parameters (i.e. randomness,
10O size, read-write ratio and average outstanding 1Os) are inherent
to a workload and are mostly independent of the underlying device.
The device dependent characteristics are the actual 10 latencies and
throughput observed for a workload, which we are not considering
for the workload modeling. The model tries to predict the load
that a workload might induce on a storage device. This load can
be measured and evaluated in many ways. We are using the 10
latency seen by a workload as a metric to estimate the load induced
by a workload and to validate our model. Using IO latencies for
validation creates some dependence on the underlying device and
storage array architectures. So some inaccuracies in modeling can
be attributed to this particular way of validating the model.

In order to do the modeling we ran 750 configurations varying the
values of each of these parameters, using Iometer [1] inside a Mi-

crosoft Windows 2003 VM accessing a 4 disk RAID-0 LUN on
a EMC CLARIiON array. The set of values chosen are a cross-
product of:

Outstanding 10s {4, 8, 16, 32, 64}
10 size (in KB) {8, 16, 32, 128, 256, 512}
Read% {0, 25, 50, 75, 100}
Random% {0, 25, 50, 75, 100}

For each of the configurations we obtain the values of average 10
latency and IOPS, both for reads and writes. For workload mod-
eling, we looked at the variation of average IO latency for each
one of these parameters keeping others fixed. Figure 2(a) shows
the relationship between outstanding IO0s and IO latency for vari-
ous workload configurations. We note that latency varies linearly
with the number of outstanding IOs (denoted as OIOs) for all the
configurations. This is expected because as the total number of
OIOs increase the overall queuing delay would increase linearly
with it. For very small number of OIOs, we may see non-linear be-
havior because of the improvement in device throughput but over
a reasonable range (8-64) of OIOs we do see very linear behavior.
Similarly, IO latency varies linearly with the variation in IO sizes
as shown in Figure 2(b). This is because the transmission delay
increases linearly with 10O size.

Figure 2(c) shows the variation in IO latency as we increase the per-
centage of reads in the workload. Interestingly, the latency again
varies linearly with read percentage except for some non-linearity
around corner cases such as completely sequential workload. We
used the percentage of read as a variable because, for most cases,
we noticed that the read latencies were almost an order of mag-
nitude higher than the write latencies. This is mainly due to the
fact that writes return once they are written to the cache at the ar-
ray and the latency of destaging is hidden from the application. In
cases, where the cache is completely filled, the writes may see la-
tency closer to the reads. We believe that to be less common case
especially given the burstiness of most enterprise applications [12].
Finally we looked at the variation of latency with random% (shown
in Figure 2(d)) and noticed that it is linear with a very small slope,
except for a big drop in latency for the completely sequential work-
load. These results show that except for extreme cases such as
100% sequential or 100% write workloads, the behavior of latency

with respect to these parameters is quite close to linear?.

Based on these observations, we modeled the IO latency (L) of a
workload using the following equation:

read% random%
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We compute all of the constants in the above equation using the
data points available to us. We explain the computation of K| here,
other constants K, K3 and K4 are computed in a similar manner.
To compute K, take two latency measurements with different OIO
values and same value for other three parameters. Then by dividing

2The small negative slope in some cases in Figure 2 with large
OIOs is due to prefetching issues in our target array firmware. This
effect went away when prefetching is turned off.
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Figure 2: Variation of 10 latency with respect to each of the four workload characteristics: outstanding 10s, 10 size, % Reads and

% Randomness.
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Figure 3: Relative error in latency computation based on our formula and actual latency values observed.

the two equations we get:
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We compute the value of K for all pairs where the three parame-
ters except OIO, are same and take the median of the set of values
obtained as K|. The values of K| are in a range, with some out-
liers and picking a median ensures that we are not biased by few
extreme values. We repeat the same procedure to obtain other con-
stants in the numerator of equation (1). To get the value of K5, we
compute a linear fit between actual latency values and the value of
numerator based on K; values. Linear fitting returns the value of K5
that minimizes the least square error between the actual measured
values of latency and our estimated values. Once we determined

all the constants of the model in Equation 1, we compared the two
latency values. Figure 3 (LUN 1) shows the relative error between
the actual and computed latency values for all workload config-
urations. Note that the computed values do a fairly good job of
tracking the actual values, suggesting that our modeling equation is
good at predicting latency based on workload parameters.

In order to validate our modeling technique, we ran the same iden-
tical 750 workload configurations on a different LUN on the same
EMC storage array with 8 disks. We used the same values of K7,
K>, K3 and K, as computed before. Since the disk types and RAID
configuration was identical, K5 should vary in proportion with the
number of disks, so we doubled the value, as the number of disks is
doubled in this case. Figure 3 (LUN 2) again shows the actual and
computed latency values for various workload configurations. Note
that the computed values based on the previous constants again do
a fairly good job of tracking the actual values. We noticed that most
of the error values are due to the poor prediction for corner cases
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Figure 4: Variation of 10 latency with respect to each of the four workload characteristics: outstanding IOs, 10 size, % Reads and

% Randomness.

such as 100% sequential, 100% writes etc.

To understand variation across different storage architectures, we
ran similar 750 tests on a NetApp FAS-3140 storage array. The
experiments were run on a 256 GB VM disk created on a 500 GB
LUN backed up by a 7 disk double parity RAID group. Figures 4(a),
(b), (c) and (d) show the relationship between average 10O latency
with OIOs, 10 size, Read% and Random% respectively. Again for
OIOs, IO size and Random% we observed a linear behavior with
positive slope, but for Read% case, the slope was close to zero or
slightly negative. We also noticed that the read latencies were very
close or slightly smaller than write latencies in most cases. We
think this is due to a small NVRAM cache in the array (512 MB).
The writes are getting flushed to the disks in a synchronous manner
and array is giving slight preference to the reads over writes. We
again modeled the system using Equation 1 and computed the rela-
tive error in the measured and computed latencies, based on the K;
values computed using the NetApp measurements. Figure 5 shows
the relative error for all 750 cases. We looked into the mapping of
cases with high error with the actual configurations and noticed that
99% of those configurations are completely sequential workloads.
This shows that our linear model over-predicts the latency for 100%
sequential workloads because the linearity assumption doesn’t hold
in such extreme cases. Figure 2(d) and 4(d) also show a big drop
in latency as we go from 25% random to 0% random case. We also
looked at the relationship between IO latency and workload param-
eters for such extreme cases. Figure 6 shows that for sequential
cases the relationship between read% and IO latency is not quite
linear.

In practice, we think such cases are rare and poor prediction for
such cases is not as critical. In earlier work, we have done work-

load characterization studies using five enterprise workloads [12]:
DVDStore, Microsoft Exchange, OLTP, a TPC-C like workload
and a Decision Support System (DSS) benchmark. All workloads
except for decision support system showed random access patterns.
Readers are encouraged to look at that study [12] for more details.
In summary, there are two main challenges that we are looking into
as part of our ongoing effort: (1) Can we use a fixed set of constants
K1, K>, K3 and Ky for all workloads? (2) how well the modeling
works for dynamic workloads where the workload characteristics
change over time? Is using a certain percentile value for these vari-
ables good enough for effective modeling? As future work, we
plan to study the online computation of these parameters for vari-
ous workloads. Next, we need to figure out the actual device char-
acteristics and use them to compute the denominator in Equation 1.

3. STORAGE DEVICE MODELING

So far we have talked about modeling of workloads based on the pa-
rameters that are inherent to a workload. In this section we present
our device modeling technique using the measurements affected by
the performance of the device. Most of the device-level character-
istics such as number of disk spindles backing a LUN, disk-level
features such as RPM, average seek delay, etc. are hidden from the
hosts. Storage arrays only expose a LUN as a device This makes
it very hard to make load balancing decisions because one needs to
know if the workload is being moved from a LUN with 20 disks to
a LUN with 5 disks or from a LUN with high performance drives
to a LUN with slower disk drives.

For device modeling, instead of trying to obtain a white-box model
of the array LUNs, we use IO latency as the main performance
metric. We collect information pairs consisting of number of out-
standing 1Os and average 1O latency observed. In a time interval,
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hosts know the average number of outstanding IOs that are sent to a
LUN and they also measure the average IO latency observed by the
I0s. Thus this information can be gathered in a very transparent
manner without any extra overhead. For clustered environments,
where multiple hosts may access the same LUN, one can aggregate
this information across hosts to get aggregate results.

We have observed that IO latency increases linearly with the in-
crease in number of outstanding IOs (i.e. load) on the array. This is
also shown in earlier studies [10,11]. Given this knowledge, we use
the set of data points of the form (OI0, Latency) over a period of
time and compute a linear fit line which minimizes the least squares
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Figure 8: Device Modeling: different disk types

error for the data points. The slope of the the linear fit line would
indicate the overall performance capability of the LUN. We believe
that this should also cover cases where LUNSs have different number
of disks and also the ones where disks have diverse characteristics
i.e. enterprise level FC vs SATA disks.

We did a simple experiment using LUNs with different number of
disks and measured the slope of the linear fit line. A typical work-
load of 8KB random IOs is run on each of the LUNs using a Win-
dows VM running lometer [1]. Figure 7(a) shows the variation of
IO latency with OIOs for LUNs with 4 to 16 disks. Note that the
slopes vary inversely with the number of disks. Figure 7(b) shows
the relationship between 1/slope for various LUNs with the num-
ber of disks in the LUN.

To understand the behavior in presence of different disk types, we
ran an experiment on a NetApp FAS-3140 storage array using two
LUNSs, each with seven disks and dual parity RAID. LUN1 con-
sisted of enterprise class FC disks (134 GB each) and LUN2 con-
sisted of slower SATA disks (414 GB each). We created an equal
sized virtual disk of size 256 GB on each of the LUNs and ran a
workload with 80% reads, 70% randomness and 16KB IOs, with
different values of OIOs. The workloads were generated using
Iometer [1] inside a Windows 2003 VM. Figure 8 shows the av-
erage latency observed for these two LUNs with respect to OIOs.
Note that the slope for LUN1 with faster disks is 1.13, which is
lower compared to the slope of 3.5 for LUN2 with slower disks.



These results shows that the performance of a LUN can be esti-
mated by looking at the slope of relationship between average la-
tency and outstanding IOs over a long term and using that for cost
benefit analysis needed for load balancing. Based on these results,
we define a performance parameter & to be the inverse of the slope
obtained by doing a linear fit on the (OO, Latency) data pairs col-
lected for that LUN.

4. LOAD BALANCE ENGINE

Load balancing requires a metric to balance over multiple resources.

We use _Z; as the numerator of Equation 1 for each workload W; as
the main metric for load balancing. Furthermore, we also need to
consider LUN performance while doing load balancing. We use
parameter &; to represent the performance of device D;. Intu-
itively we want to make the load proportional to the performance
of each device. So the problem reduces to equalizing the ratio of
sum of workload metrics and LUN performance metric for each
LUN. Mathematically, we want to equalize:

Y 4
V W, onD; (4)
Zj

The algorithm first computes the sum of workload metrics. Let N
be the normalized load on a device defined as:

Y.<
P;

Nj= &)
and o(N) be the variance of the normalized load. Algorithm 1
presents the pseudo-code for the load balancing algorithm. In a
loop, till we get the variance the normalized load across devices un-
der a threshold, we pick the devices with minimum and maximum
normalized load to do pair-wise load migration such that both de-
vices approach the overall average of N. Each iteration of the loop
tries to find the set of virtual disks that need to be moved from the
device with maximum ratio to the one with the minimum ratio. Op-
timizations in terms of data movement are mentioned later in this
section. Doing a perfect balancing between these two devices is a
variant of subset-sum problem which is known to be NP-complete.
We are planning to use one of the approximations [14] proposed for
this problem with a quite good competitive ratio of 3/4 with respect
to optimal. We plan to test multiple heuristics and various ways
of doing the selection of which workload to move from a higher
loaded device to another, as explained next.

Algorithm 1: Load Balancing Step

foreach device j do
foreach workload i currently placed on device j do
L S+=%
L Nj«—S/2j
while 6(N) < varianceT hreshold do
D «—— Device with maximum normalized load
Dy «—— Device with minimum normalized load
| Ni,N; «— PairWiseRecommendMigration(D{, D;)

Workload/Virtual disk Selection: We can bias the search func-
tion in many ways: (1) pick virtual disks with the highest value
of Z;/(disk size) first, so that the change in load per GB of data
movement is higher leading to smaller data movement (2) pick vir-
tual disks with smallest current IOPS/.Z; first, so that the impact of
movement right now is minimal. Other constraints such as affinity
between virtual disks and data stores, access to the destination data

store at the current host running the VM, etc. can be handled as
part of virtual disk selection in this step. Overall, this step incorpo-
rates any cost-benefit analysis that is needed to chose which VMs
to migrate in order to do load balancing. After computing these
recommendations, they can either be presented to the user as sug-
gestions or can be carried out automatically during periods of low
activity.

Initial Placement: Better decision in terms of initial placement of
workloads or virtual disks is as important as future migrations. Ini-
tial placement gives us a good way to reduce potential imbalance
issues in future. In this design, we plan to use the overall normal-
ized load (i.e. ratio of workload metrics and LUN performance
metric) as an indicator of current load at the LUN. After resolv-
ing hard constraints in terms of reliability or types of storage, we
choose the LUN with the minimum value of the normalized load
as defined above. This ensures that with each initial placement, we
are naturally reducing the overall standard deviation among nor-
malized load on LUNSs.

4.1 Discussion

In one of our previous studies [12] we studied the impact of consol-
idation on various kinds of workloads. We observed that when ran-
dom workloads and the underlying devices are consolidated, they
tend to perform at least as good or better in terms of handling bursts
and the overall impact of interference is very small. Although when
we place random and sequential workloads together, we saw degra-
dation in throughput of sequential workloads. We also studied two
top-tier enterprise applications: Microsoft Exchange and Oracle
database (Swingbench and TPC-C like workloads) and found all
of them to have random access patterns. So in the common case
we don’t envision too many sequential workloads in use. How-
ever, to handle specific workloads such as log virtual disks, deci-
sion support systems, multi-media servers, we plan to incorporate
two optimizations: first isolating them on separate set of spindles
to reduce interference and second allocating fewer disks to the se-
quential workloads because their performance is less dependent on
the number of disks as compared to random workloads. This can
be done be setting soft affinity of these workloads to specific LUNs
and setting anti-affinity of such workloads with random ones. Thus
we can bias our greedy load balancing heuristic to consider such
affinity rules while making placement decisions.

Whereas we consider these optimizations as part of our future work,
we believe that the proposed techniques are useful for a wide va-
riety of cases even in the current form since existing systems do
not provide effective support for IO load balancing. In some cases
users may have reliability or other policy constraints such as RAID-
level, mirroring, etc., attached to VM disks. In those cases a set of
devices would be unsuitable for some VMs and we would treat that
as a hard constraint in our load balancing mechanism while recom-
mending placements and migrations.

S. EXPERIMENTAL EVALUATION

In this section we discuss some of the preliminary results of our
experiments with the modeling metrics and load balancing mecha-
nism discussed earlier. For our experiments we use five workloads
with very different characteristics, as shown in Table 1. All work-
loads are generated using Iometer running inside a Windows 2003
VM. The workloads are represented as W1, W2, W3, W4 and W5.
We also used two data stores: Datastorel (D) and Datastore2 (D;)
backed by 5 and 10 disks RAID groups with identical disks on an
EMC CLARIiON array.



Before Running SRS After Running SRS
Workers || Latency | Throughput | Location || Latency | Throughput | Location
(ms) (IOps) (ms) (I0ps)
W1 19 800 D, 17 881 D,
W2 13 650 D, 18 390 D,
W3 18 100 D, 26 70 D,
W4 1 4000 D, 1.7 3600 D>
W5 20 760 D, 13 1200 D,

Table 2: Workload Migration Recommendation by SRS. Average latency and 10 Throughput for workloads W1 through W2 before

and after migration.

Before Running SRS After Running SRS
Datastores | # Disks | K5 || Latency | IOPs | Total Load (.¥) || Latency | IOPs | Total Load (.¥)
D, 5 1 19 1560 10472 13 1200 6314
D, 10 2 3 4750 3854 6.5 4800 5933

Table 3: Results of Workload Migration Recommendation by SRS. Latency, IOPS and overall load on Datastores D and D,.

Workers | OIO [ IOSize (KB) | Random % | Read %

W1 16 4 100 75
w2 8 64 10 100
W3 2 128 90 50
W4 4 32 0 0

W5 16 32 100 75

Table 1: Details of Test Workloads.

We first ran the base case where W1 and W5 are located on Data-
store2 and others are located on Datastorel. Table 3 shows the
overall latency and IOPS obtained by two datastores. The last col-
umn represents the sum of load metric for the two datastores based
on workloads running on each of them. Note that the overall load
and also the average latency is very different for the two datastores.
Table 2 shows the average latency and IOPS for each of the indi-
vidual workloads for this case. Again we notice that workloads on
Datastore2 see much lower latency as compared of workloads on
Datstorel.

Then we computed the load metric for each workload using numer-
ator in Equation 1 and did workload migration to equate the load
on two data stores based on overall workload and device model.
In this case we assume that device model has been computed sepa-
rately and we know that one device is twice as powerful as the other.
This is reflected in the K5 for each device mentioned in Table 3.
Based on the recommended migration computed by our algorithm,
we moved W1 to Datastore2. Table 3 shows the overall latency and
IOPS obtained by two datastores after the movement. Note that
average latency has moved from (19,3) ms to (13,6) ms which is
much more balanced compared to the first case. In this case this
turns out to be the optimal assignment as well based on the gran-
ularity of the migration. Table 2 presents the individual workload
measurements for this case. Again notice that W5 gets much lower
latency as it is running alone on Datastorel. Some workloads see
an increase in latency but that is expected when we move workloads
to an under-utilized datastore. The sum of IOPS may be different
because workloads don’t always add up when they are run together
on a datastore. Although we did notice that both OLTP workloads
got higher number of IOPS and the sequential workload got hit by
the move.

In general we expect the IO throughput to not decrease substantially
except for the cases when highly sequential workload streams are

hit by the interference from other workloads. We plan to detect
such cases and avoid placing such workloads with others as much
as possible.

6. RELATED WORK

There has been a lot of prior work related to storage configuration,
workload characterization and placement. Hippodrome [5] auto-
mates storage system configuration by iterating over three stages:
analyze workload, design system and implement design. Similarly
Minerva [4] uses a declarative specification of application require-
ments and device capabilities to solve a constraint based optimiza-
tion problem for storage system design. These tools are trying to
solve a more difficult problem of optimizing overall storage sys-
tem design. Our model is designed to load balance an existing
storage system. Overall we believe that such tools are compli-
mentary to our work and would work better with the knowledge
gained through our workload characterizations. Other studies have
looked into file system access patterns [2, 13, 17] and 1O patterns
at disks [15], mostly in context of user workloads in an organiza-
tion. Although these are quite useful for file system level analysis,
we mainly focus on VM workloads running enterprise and other
applications.

Studying RAID performance for different workloads has been an
active area of research. Chen et. al. [6—8] have shown that stripe
size, 1O sizes and RAID level can have a wide impact on overall
performance. They also showed that applications with large ac-
cesses do better with RAID 5 and application using large number of
smaller accesses (e.g. OLTP), perform better using mirrored RAID.
Researchers have also tried to model disk drives [16] and storage
arrays [9, 18] to automate the analysis and prediction of workload
behaviors. This is especially hard given the device characteristics
of disks and all the complexity built into an array in terms of service
processors, buses, controller caches etc. Most existing commer-
cial products such as EMC CLARIiiON, HP SureStore, IBM Tivoli,
Equalogic PS series provide a layer of abstraction for storage de-
vices and management tools to partition and configure devices as
needed. Some of them also do automatic load balancing by moving
data within or across arrays. However, configuring storage arrays
using these tools is still a difficult task. We try to model workloads
and devices based on simple statistics that can be collected trans-
parently and efficiently inside a hypervisor. We believe that our
models are simple yet effective for use in practice.



7. CONCLUSIONS AND FUTURE WORK

In this paper, we presented modeling techniques for workloads and
storage devices in order to do load balancing of workloads over a
set of devices. The workloads were modeled independent of un-
derlying device using the parameters inherent to a workload such
as seek distances, read-write ratio, average 1O size and outstand-
ing 10s. For device modeling we used statistics such as 1O latency
with respect to outstanding IO0s which is dependent on the stor-
age device. We also presented a load balancing engine that can
do migrations in order to balance overall load on devices in pro-
portion to their capabilities. Our preliminary evaluation shows that
the proposed modeling works well in characterizing workloads and
devices.

Some of the research problems that have emerged from this work
are: (1) How to characterize dynamic workloads for load balanc-
ing? Are percentile values for workload parameters good enough
in real systems? (2) Can we use static values of constants such as
K to K4 for workloads running on different devices or do we need
online estimation? (3) How to measure and predict interference
among various workloads accessing a device? (4) How to suggest
storage configuration changes to an administrator based on online
workload monitoring. Ultimately the task of workload monitoring,
device modeling and load balancing needs to happen in a feedback
loop over time to handle churn in today’s storage environments.
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